

6653 Herdman Road Angelica, New York 14709

Phone: (585) 466-7271 Fax: (585) 466-3206

February 22, 2011

Ms. Mary E. Hohmann Division of Environmental Permits NYSDEC – Region 9 182 E. Union, Suite 3 Allegany, New York 14706-1328

RE: Title V Permit Modification – Hyland Facility Associates Permit ID: 9-0232-00003/00012

Dear Ms. Hohmann:

Hyland Facility Associates (Hyland) is submitting the enclosed three copies of a Title V permit modification application, prepared by McMahon & Mann Consulting Engineers, P.C., requesting approval to increase the annual solid waste disposal tonnage at the Hyland Landfill from 312,000 tons per year to 465,000 tons per year (i.e., approximately 49 percent increase). The design capacity of the Hyland Landfill will remain the same at 14,169,300 cubic yards.

Hyland is not requesting a change in the amount of beneficial use determination (BUD) material accepted at the landfill. BUD material will remain the same at:

- BUD for alternate daily cover (ADC) not to exceed 20 percent of the annual incoming solid waste tonnage, and
- BUD for roadways on the landfill not to exceed 10 percent of the annual incoming solid waste tonnage.

If there is any further information that you require or if you have any questions, please contact me at (585) 466-7271.

Sincerely,

HYLAND FACILITY ASSOCIATES

Joseph R. Boyles General Manager

2495 Main Street, Suite 432, Buffalo, NY 14214

Donald R. McMahon, P.E. Michael J. Mann, P.E. Kenneth L. Fishman, PhD., P.E. John A. Minichiello, CPESC, CPSWQ James Bojarski, P.E. Shawn W. Logan, P.E. Andrew J. Nichols, P.E. Todd Swackhamer, P.E.

February 22, 2011 File: 93-002

Mr. Joseph Boyles Hyland Facility Associates 6653 Herdman Road Angelica, New York 14709

RE: Hyland Facility Associates, Title V Permit Modification Application 49 Percent Tonnage Increase

Dear Mr. Boyles;

McMahon & Mann Consulting Engineers, P.C. has prepared the attached Title V permit modification application requesting approval from the New York State Department of Environmental Conservation to allow a 49 percent increase in the annual waste tonnage for the Hyland Landfill. The LandGEM model shows that the annual waste tonnage increase will result in an increase in landfill gas generation. However, emissions estimates based on the increase in landfill gas generation show the Hyland Landfill will continue to be a minor facility for air emissions. Therefore, the annual tonnage increase request will result in a minor modification to the Title V permit.

Please contact our office (716-834-8932) should you have any questions regarding this submittal.

Sincerely yours,

MCMAHON & MANN CONSULTING ENGINEERS, P.C.

John A. Minichiello, CPESC, CPSWQ

Uchael J. Mam

Michael J. Mann, P.E.

Enclosure

HYLAND FACILITY ASSOCIATES

TITLE V PERMIT MODIFICATION APPLICATION PROPOSED 49 PERCENT ANNUAL ACCEPTANCE RATE INCREASE

Prepared for:

Hyland Facility Associates 6653 Herdman Road Angelica, New York 14709

Prepared by:

McMahon & Mann Consulting Engineers, P.C. 2495 Main Street, Suite 432

Buffalo, New York 14214

Michael J. Mann, P.E. NYS PE License No. 59917

FEBRUARY 2011

Table of Contents

1.0		1
2.0	LANDGEM MODEL	1
3.0	FACILITY EMISSIONS	2
3.2	LANDFILL GAS TO ENERGY PLANT 3,000 CFM OPEN FLARE FUGITIVE LANDFILL EMISSIONS	2
4.0	EMISSION SUMMARY	3

APPENDICES

Appendix A - Title V Permit Modification Application
Appendix B - LandGEM v3.02 Report
Appendix C - Air Emissions Estimates and Example Calculations
Appendix D - Title V Permit Modification Application Proposed 49 Percent Annual
Acceptance Rate Increase Additional Application Requirements

1.0 INTRODUCTION

Hyland Facility Associates (Hyland) owns and operates the Hyland Landfill in Angelica, New York. Hyland is requesting authorization to increase the incoming solid waste tonnage from 312,000 tons per year (t/yr) to 465,000 t/yr (i.e., 49 percent increase). Currently Hyland is allowed to receive beneficial use determination (BUD) materials in addition to the annual solid waste tonnage, at the following rates:

- BUD for alternate daily cover (ADC) not to exceed 20 percent of the annual incoming solid waste tonnage, and
- BUD for roadways on the landfill not to exceed 10 percent of the annual incoming solid waste tonnage.

The facility, operating under Title V Permit ID # 9-0232-00003, is currently a minor source under the NYSDEC Prevention of Significant Deterioration (PSD) regulations and will continue to be a minor source, because its potential emissions (PTE) with the 49 percent tonnage increase are less than the major threshold status levels, as shown in the summary table in Section 4.0. Further, the facility is subject to the New Source Performance Standards (NSPS) 40 CFR 60 Subpart WWW because the facility design capacity of 8,682,194 megagrams (Mg) of solid waste is greater than the NSPS threshold of 2.5 million Mg.

Hyland currently operates an active landfill gas (LFG) collection and control system in accordance with the Title V permit. Collected LFG can be directed to a 3-engine landfill gas to energy (LFGTE) plant or a 3,000 cubic feet per minute (ft³/min) open flare.

Because the requested 49 percent annual tonnage increase exceeds the 374,400 t/yr (i.e., 312,000 t/yr of solid waste plus 62,400 t/yr BUD-ADC) under the Title V permit, a modification to the Title V permit is required. The permit modification requires estimating the PTE from the landfill, the LFGTE plant and the open flare resulting from the increased annual tonnage. A copy of the Title V permit modification application is included in Appendix A.

2.0 LANDGEM MODEL

PTE estimates for emissions from the LFGTE plant and the open flare require estimating the amount of LFG generated in the peak year of landfill operation (i.e., 2025) using the USEPA LandGEM v3.02 (LandGEM) model (see Appendix B). The LandGEM model requires the input of annual solid waste tonnage from the year the landfill opens until the year it closes. In order to calculate a closure year, the LandGEM model also requires the input of the maximum amount of solid waste that will be disposed in the landfill. Based on condition 25.2.6 of the Title V permit, Sanborn Head used a design capacity of 8,682,194 Mg in the November 3, 2003 State Facility Application for the Hyland Landfill expansion project.

For this Title V permit modification, the 8,682,194 Mg was converted to t/yr using the conversion factor 1.102 t/Mg. This conversion results in a design capacity of 9,567,778

tons, which was input into LandGEM¹.

Hyland provided the tons of solid waste disposed in the landfill from 1998 through 2010. The number of tons of various waste types disposed at Hyland are summarized in Table 3 in Appendix C. The NYSDEC agreed to allow the removal of BUD and drill cutting material that was less likely to produce landfill gas.

To model the landfill gas generation rate for the 49 percent increase, we used the actual tons of solid waste disposed through 2010. Non-C&D BUD and drill cuttings were not included. Future tonnage in LandGEM was assumed to be all municipal solid waste (MSW) at 465,000 t/yr without BUD or drill cuttings up to the design capacity of 9,567,778 tons. At the peak year of LFG generation (i.e., 2025), it is estimated that 3,511 ft³/min of LFG will be generated. Assuming 75% collection efficiency of the gas collection system, 2,633 ft³/min of LFG will be collected. This gas will be directed to the LFGTE plant first (three engines at 531 cfm each, equivalent to 1,593 ft³/min open flare.

3.0 FACILITY EMISSIONS

The combustion of collected LFG results in emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulfur dioxide (SO₂), particulate matter (PM), and non-methane organic compounds (NMOCs), which include some volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). There is the potential for fugitive LFG emissions from the landfill surface. Fugitive LFG emissions include NMOCs, VOCs and HAPs. In addition, there is the potential for fugitive PM emissions from vehicles traveling along paved and unpaved roads at the Hyland Landfill facility.

Table 1 provides future potential emissions from the landfill, with the LFG being combusted by the internal combustion engines and the flare. Future potential emissions are calculated for the facility based on a 24-hour per day, 365-day per year operating schedule. A description of the emission sources at the facility is presented below.

3.1 Landfill Gas to Energy Plant

Emissions for the LFG generator set engines were estimated based on emission factors of 0.6 grams per brake horsepower-hour (g/bhp-hr) for NOx and 3.0 g/bhp-hr for SO₂ in condition 30 of the Title V permit and AP-42 emission data for internal combustion engines. Future potential emissions of CO, NOx, PM, and NMOC were calculated for the proposed three engines running 24 hours a day, 365 days per year and are presented in Table 4 of Appendix C. The HAPs and SO₂ emissions are also presented in Table 4.

3.2 3,000 cfm Open Flare

Emissions for the open flare were calculated based on manufacturer emission data. Future potential combustion emissions CO, NOx, PM, and NMOC were estimated for the

¹ LandGEM estimated 8,697,980 Mg instead of 8,682,194 Mg when using the 9,567,778 tons. This was likely due to the fact that LandGEM uses 0.909 Mg/t, which is slightly greater than 0.907 Mg/t (1 Mg/1.102 t) used by MMCE to convert the 8,682,194 Mg to 9,567,778 tons.

flare and are presented in Table 4 of Appendix C. The emissions were estimated for the peak amount of excess LFG that will be combusted by the flare (1040 ft³/min), assuming that the flare is running 24 hours a day, 365 days per year. The HAPs and SO₂ emission estimates resulting from combustion of the LFG are presented in Table 4.

3.3 Fugitive Landfill Emissions

Fugitive landfill emissions were estimated assuming 75% collection efficiency of the LFG collection system, resulting in a potential 25% of the LFG generated within the landfill to be emitted as fugitive emissions from the landfill surface. Fugitive emissions consist of NMOC, which include some VOCs, some of which are considered HAPs. These emissions are presented in Tables 5, 6 and 7 of Appendix C.

4.0 EMISSION SUMMARY

Estimated emissions are presented in Tables 4, 5, 6, 7 and 8 of Appendix C. The following is a summary of potential emissions for the entire facility.

Parameter	LFGTE ² (t/yr)	LNDFL- FLR ² (t/yr)	LNDFL- FUG (t/yr)	Total PTE (t/yr)	Major Source Status Threshold (TPY)	Major Source Status
NO _X	38.8	8.5		47.3	100	Minor
CO	194.1	46.1		240.2	250	Minor
SO ₂	19.52	12.73		32.25	250	Minor
H ₂ S	0.20	0.13	5.61	5.94	NA	
VOC	0.15	0.1	9.15	9.4	50	Minor
NMOC	0.39	0.25	10.69	11.33	NA	
PM	10.1	2.3	84	96.4	250	Minor
HAPs			6.2	6.2	10 tpy for single HAP or 25 tpy in aggregate	Minor

PTE Summary Table¹

 Emission estimates for the emission from the landfill gas to energy plant (1LFTGE), landfill fugitive emissions (1LNDFL-FUG) and the 3,000 ft³/min open flare 1LNDFL-FLR are presented in Appendix C.

2. VOCs are approximately 39 percent of the NMOCs per AP-42 Section 2.4.

APPENDIX A Title V Permit Modification Application

New York State Department of Environmental Conservation Air Permit Application

DEC ID APPLICA 9 - 0 2 3 2 - 0 0 0 3	ATION IDOF	FICE US	E ONLY / //		
Sectio	on I - Cer	tificatio	n		
Title V Certification					
I certify under penalty of law that this document and all attachments were prep personnel properly gather and evaluate the information submitted. Based on my ir NYCRR 201-6.3(d)] I believe the information is, true, accurate and complete. I a fines and imprisonment for knowing violations.	quiry of the per	son or person	is directly responsible	for gathering the inf	formation [required pursuant to 6
Responsible Official: Larry Shilling			Title:	Regional Vice	President
Signature			Date	0	
State Facility Certification I certify that this facility will be operated in conformance with all provisi	one of existing	regulation	2		
Responsible Official	ons of existing	regulations	Title		
Signature			Date		/ /
Section II - Io	dentificat	ion Info	ormation		
Title V Facility Permit New Significant Modification Renewal Minor Modification Application involves construction of new facility	endment Fitle:		State I	al Permit Title:	G Modification
Owner/Firm					
Name Hyland Facility Associates					
Street Address 25 Green Hills Lane					
City Rutland	State	Vermon	t Count	ry USA	Zip 05702
Owner Classification Federal			Municipal	-	Taxpayer ID
1 1	Individua	1			
Facility Confidential					
Name Hyland Landfill					
Location Address 6653 Herdman Road					7. 14700
□ City / ⊠ Town / □ Village Angelica, New York					Zip 14709
Project Description ©Continuation Sheet(s) Hyland Facility Associates is requesting a 49 percent from the currently approved disposal rate of 312,000	increase ir tons per ye	the ann ear to 46	ual MSW acce 5,000 tons per	eptance rate a year.	at the Hyland Landfill
Owner/Firm Contact Mailing Address					
Name (Last, First, Middle Initial) Shilling, Larry				Phone No. (5	85) 466-7271
Affiliation Hyland Facility Associates – Hyland Landfill	Title	Regiona Presider	ll Vice	Fax No.	
Street Address 6653 Herdman Road					
City Angelica	State	NY	Country US	A	Zip 14709
Facility Contact Mailing Address					
Name (Last, First, Middle Initial) Boyles, Joseph, R.				Phone No. (5	85) 466-7271
Affiliation Hyland Facility Associates – Hyland Landfill	Title	General	Manager	Fax No.	
Street Address 6653 Herdman Road			1		
City Angelica	State	NY	Country US	А	Zip 14709

9 - 1 4 6 2 - 0 0 0 1

Section III - Facility Information

Classificatio	n													
Hospit	al C	Residentia	ul 🗆 H	Educational/	Institutiona	al	Commer	rcial	X	Industrial	🗖 Utili	ty		
Affected Sta	tes (Title V Or	uly)												
U Vermo			achusetts	🛛 Rh	node Island		Pennsylv	vania	Tri	bal Land:				
□ New H	ampshire	Connecticu	ut	□ New Jer	isey 🗆	Ohio		Triba	al Land:					
<u>L</u>														
SIC Codes														
4953	3519	4911		<u> </u>										
					Faci	ility De	escription					Conti	nuatior	n Sheet(s)
		cted and con					d 3 Caterpil	llar G352	20 interr	nal combu	stion eng	gines. I	Landfill	l gas that
accompacitly	le collection	n system is a	accounted f	or in fugitiv	ve emission	18.								
escapes u														
escapes u														

Compliance Statements (Title V Only)

I certify that as of the date of this application the facility is in compliance with all applicable requirements: \square YES \square NO If one or more emission units at the facility are not in compliance with all applicable requirements at the time of signing this application (the 'NO' box must be checked), the noncomplying units must be identified in the "Compliance Plan" block on page 8 of this form along with the compliance plan information required. For all emission units at this facility that are operating <u>in compliance</u> with all applicable requirements complete the following:

This facility will continue to be operated and maintained in such a manner as to assure compliance for the duration of the permit, except those units referenced in the compliance plan portion of Section IV of this application.

□ For all emission units, subject to any applicable requirements that will become effective during the term of the permit, this facility will meet all such requirements on a timely basis.

Compliance certification reports will be submitted at least once a year. Each report will certify compliance status with respect to each requirement, and the method used to determine the status.

Facilit	Facility Applicable Federal Requirements Continuation Sheet(s)												
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause				

Facility	Facility State Only Requirements Continuation Sheet(s)												
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause				

New York State Department of Environmental Conservation Air Permit Application

				Ι	DEC	C IE)				
9	-	1	4	6	2	-	0	0	0	0	1

Section III - Facility Information (continued)

Facility C	ompliance Cert	tification □Cor	ntinuation S	Sheet(s)					
Rule Citation									
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
40	CFR	60	WWW	754					
XApplicable	Federal Requirement		CAS No.		Contaminant	Name			
State Only 1	•		0NY988-	20 - 0	NMOC – Lan		7		
Monitoring Info		11 0							
□ Ambient	Air Monitoring	Generation Work Pr	actice Invo	lving Specifi	c Operations	⊠Record K	eeping/Maintenand	ce Procedure	es
Description									
Hyland Faci	ility Associates is	proposing to inc	crease the a	nnual solid w	aste acceptance rat	te at the Hyla	nd Landfill from 31	2,000 tons	to 465,000. In
addition the	Hyland Landfill	is also allowed u	nder its Pa	rt 360 permit	to operate to accept	ot two classes	of beneficial use d	eterminatior	n materials
(BUD); BU	D for alternate da	ily cover at the r	ate of no m	ore than 20 p	ercent of the annua	al MSW tonn	age accepted and B	UD for road	lway
construction	at the rate of no	more than 10 per	rcent of the	annual MSW	/ tonnage accepted	l. Total MSW	and BUD will not	exceed 604	,500 tons/year.
Work Prac	tice Process	Material							
Туре	Code	Descriptio	on			Ref	erence Test Metho	d	
Parameter						N		r. 1.1.NT	
Code		Descriptio	on			ма	nufacturer Name/N	lodel No.	
Limit				Limit					
Upper		Lower		Code	Description				
						-			
Averaging Code	Method Description		Moni Code	toring Freque Descri		Rej Coo	orting Requiremer		
Coue	Description		11	Per De		14	Semi-a		
			11	i ci De	shi tory	14	Senn-a	inidui	

					PTE		
CAS No.				Contaminant Name	(lbs/yr)	Range Code	Actual (lbs/yr)
NY075	- 00	-	5	PM-10		F	
NY075	- 00	-	0	PM-2.5		В	
7446	- 09	-	5	SULFUR DIOXIDE		D	
NY210	- 00	-	0	OXIDES OF NITROGEN		Е	
630	- 08	-	0	CARBON MONOXIDE		G	
0NY998	- 20	-	0	NMOC-LANDFILL USE ONLY		С	
NY998	- 00	-	0	VOC		В	
NY100	- 00	-	0	НАР		В	
7783	- 06	-	4	HYDROGEN SULFIDE		В	

New York State Department of Environmental Conservation Air Permit Application

 DEC ID

 9
 1
 4
 6
 2
 0
 0
 0
 1

Section IV - Emission Unit Information

Emission Unit Description Continuation Sheet(s)												
EMISSION UNIT												

Continuation Sheet(s)			
Building Name	Length (ft)	Width (ft)	Orientation

Emission Poi	int 🛛 Continu	ation Sheet(s)				
EMISSION PT.						
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross Section	
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
EMISSION PT.						
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross Section	
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal

Emissio	n Sour	ce/Control	🗵 Continuati	ion Sheet(s)				
Emission So ID	ource Type	Date of Construction	Date of Operation	Date of Removal	Control Code	Type Description	Manufa	cturer's Name/Model No.
Design Capacity	Design C Code	Capacity Units Description			Waste F Code	Feed Description	Waste T Code	Type Description
<u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>		Description				Description		Description
Emission So ID	ource Type	Date of Construction	Date of Operation	Date of Removal	Control Code	Type Description	Manufa	cturer's Name/Model No.
Design		Capacity Units			Waste F		Waste T	
Capacity	Code	Description			Code	Description	Code	Description
	<u> </u>	<u> </u>						

 DEC ID

 9
 1
 4
 6
 2
 0
 0
 0
 1

Process Inform	nation	□Con	itinuat	tion S	Sheet(s)								
EMISSION UNIT										PROCES	S		
Description					-								
Source Classificati	ion		Tota	al Th	ruput		Thruput Quan	tity Units					
Code (SCC)	1011		-	ntity	-	Quantity/Yr	Code	Description					
								1					
	1					Operating Scheo	lule						
ConfidentiOperating		num Car	oacity			Hrs/Day	Days/Yr	Building	Floor/I	Location			
□ Activity w	ith Insigr	nificant l	Emissi	ions									
Emission Source/Control Identifier(s)													
											G	_	
EMISSION UNIT										PROCES	S		
EMISSION UNIT Description										PROCES	S		
										PROCES	S		
										PROCES	S		
										PROCES	S		
										PROCES	S		
										PROCES	S		
										PROCES	S		
										PROCES	S		
Description										PROCES	S		
Description	ion				ruput		Thruput Quan	-		PROCES	S		
Description	ion			al Th		Quantity/Yr	Thruput Quan Code	tity Units Description		PROCES	S		
Description	ion						Code	-		PROCES	S		
Description						Operating Schee	Code	Description			S		
Description	al at Maxin	num Cap	Qua	untity,			Code	-	Floor/I	PROCES	S		
Description	al at Maxin ith Insigr	nificant l	Qua pacity Emissi	untity,		Operating Schee	Code	Description	Floor/I		S		
Description	al at Maxin ith Insigr	nificant l	Qua pacity Emissi	untity,		Operating Schee	Code	Description	Floor/I		S		
Description	al at Maxin ith Insigr	nificant l	Qua pacity Emissi	untity,		Operating Schee	Code	Description	Floor/I		S		
Description	al at Maxin ith Insigr	nificant l	Qua pacity Emissi	untity,		Operating Schee	Code	Description	Floor/I		S		

New York State Department of Environmental Conservation Air Permit Application

				Ι	DEC	CIE)				
9	-	1	4	6	2	-	0	0	0	0	1

Emission	Emission		Emission		Em	ission	u Unit Aj	plicable Fee	leral Require	nents 🗵	Continuation	Sheet(s)	
Unit	Point	Process	Source	Title	Туре	Part	Sub Pa	t Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
mission	Emission		Emission		Emi	ssion	Unit Sta	te Only Req	uirements	Conti	nuation Shee	t(s)	
nit	Point	Process	Source	Title	Туре	Part	Sub Par	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
								_					
						-							
Emission Rule Citation		Complia	ance Ce	rtific	ation		Contin	uation Sheet	(s)				
Title	Гуре	Pa	art S	ub Part	S	ection	S	ıb Division	Paragraph	Sut	Paragraph	Clause	Sub Clause
	cable Feder				Only F	lequir	rement			ng			
Emission Unit	Emis Point			Emission Source	n C	AS No).		Contamina	nt Name			
							-	-					
Monitoring In												-	
Interr	nuous Emis nittent Emi ent Air Mo	ssion Test	nitoring ting				Monito Work P Record	ring of Proce actice Invol Keeping/Ma	ess or Control ving Specific untenance Pro	Device F Operation ocedures	arameters as	Surrogat	5
Description													
Work Practic Type	ce Proc	cess Mate le	rial Descriptio	n					R	eference '	Test Method		
Parameter	•									L C /		1.1.1.1	
Code			Descriptio	n					N	lanufactu	rer Name/Mo	del No.	
т· ·,						. .							
Limit Upper			Lower				<u>mit Unit</u> ode	B Description	1				
								F					
Averaging M	lethod				onitoring	g Freq	uency				Requirements		
Code	Descripti	ion		Co	de	De	escription	1	C	ode	Description	on	

 DEC ID

 9
 1
 4
 6
 2
 0
 0
 0
 1

Determin	nation o	of No	on-A	pplic	cabil	lity ('	Title	V Only)		ontinu	ation S	sheet(s	s)					
Rule Citatio	on																	
Title	Туре]	Part		Sub P	art	Section	Sub	Divisio	on	Parag	graph Su	ıb Paragraph	Clause		Sub Cla	use
Emission Un	it	Emis	sion Po	oint		Proce	SS	Emission So	ource			— •		1.0.				
_													pplicable Fede ate Only Requ		ent			
Description												- 54	ate only reequ	nement				
Description																		
Rule Citation	L																	
Title	Туре]	Part		Sub P	art	Section	Sub	Divisio	on	Parag	graph Su	ıb Paragraph	Clause		Sub Cla	use
Emission Un	it	Emis	sion Po	oint		Proce	ss	Emission So	ource				pplicable Fede	ral Decuiram	ent			
-													ate Only Requ		Ciit			
Description								1					. 1					
Description																		
Dreases		n . C																
Process I	emissio	ns 5	umn	iary		ontinua	ation S	heet(s)									-	
EMISSION	UNIT		-												PROCESS			
											%		%		ERP	ER	P How	
CAS No.			Contar	ninant	Name						Thrup	ut	Capture	% Control	(lbs/hr)	De	termined	i
PTE															Actual			
			<i>a i</i>				,			Standa	ırd		PTE How			a		
(lbs/hr)			(lbs/y	r)			(stand	dard units)		Units			Determined	1	(lbs/hr)	(lb	s/yr)	
EMISSION	UNIT		-												PROCESS			
											%		%		ERP	ED	P How	
CAS No.			Contar	ninant	Name	•					70 Thrup	ut	Capture	% Control	(lbs/hr)		termined	1
											1		1		× /			
PTE															Actual			
			<i>a i</i>				,			Standa	ırd		PTE How		-	a		
(lbs/hr)			(lbs/y	r)			(stand	dard units)		Units			Determined	1	(lbs/hr)	(lb	s/yr)	
EMISSION	UNIT		-												PROCESS			
		-+									%		%		ERP	ED	P How	
CAS No.			Contar	ninant	Name						70 Thrup	ut	Capture	% Control	(lbs/hr)	De	termined	1
		-+			-						ľ				. /	-		
L									<u> </u>									
PTE										Standa	ard		PTE How		Actual			
(lbs/hr)			(lbs/y	r)			(stand	dard units)		Units		Determined		(lbs/hr) (lbs/yr)				

 DEC ID

 9
 1
 4
 6
 2
 0
 0
 0
 1

EMISSION UNIT	Emiss	mmary	⊠Continuation Sheet(s)			
CAS No.	Contaminant Name					
	PTE Emissions		Actual			
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)		
CAS No.	Contaminant Name					
			-			
	PTE Emissions		Actual			
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)		
CAS No.	Contaminant Name					
	PTE Emissions		Actual			
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)		
CAS No.	Contaminant Name					
	PTE Emissions		Actual			
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)		

Complian	ce Plan	Continua	tion She	et(s)								
For any emis	sion units wl	hich are <u>not</u>	t in comp	liance at t	he time o	of permit ap	plication,	the applicant sl	hall com	plete the follo	wing	
Consent Order Certified progress reports are to be submitted every 6 months beginning/												
Emission		Emission	Applica	Applicable Federal Requirement								
Unit	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-												
Remedial Me	easure / Inter	mediate Mi	ilestones							R/I	Date Schedu	led
											-	

Request for Emis	ssion Reduc	ction Credits	Continuation Sheet(s)			
EMISSION UNIT	-					
Emission Reduction Desc	cription					
	*					
Contaminant Emission Re	eduction Data					
				I	Reduction	
				Ι	Date	Method
Baseline Period	/	/	to <u>/ /</u>	_	/ /	
G + G 11		a			ERC (lbs/yr)	
CAS No.		Contaminant N	ame	1	Netting	Offset
·						
Facility to Use Future Rec	duction			APPLICATION	ID	
Ivallie			-	-		/
Location Address						
\Box City / \Box Town / \Box	Village			State	Zip	
		~				
Use of Emission	Reduction	Credits \Box	Continuation Sheet(s)			
EMISSION UNIT	-					
Proposed Project Descript	tion					
Contaminant Emissions I	ncrease Data					
Contaminant Emissions In	ncrease Data	Contaminant N	lame		PEP (lbs/vr)	
CAS No.		Contaminant N	lame		PEP (lbs/yr)	
CAS No.		Contaminant N	lame		PEP (lbs/yr)	
CAS No.				<u>ice</u> with all applica endments of 1990.		state regulations including any dule of a consent order.
CAS No.	 ne ownership of ion requirements	this "ownership/f s under Section 11	Tame Tirm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am	<u>ice</u> with all applic: endments of 1990,		state regulations including any dule of a consent order.
CAS No. Statement of Compliance All facilities under th compliance certificat	 ne ownership of ion requirements	this "ownership/f s under Section 11	irm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am	PERMIT ID		state regulations including any dule of a consent order.
CAS No. Statement of Compliance All facilities under th compliance certificat Source of Emission Redu- Name	 ne ownership of ion requirements	this "ownership/f s under Section 11	irm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am			state regulations including any dule of a consent order.
CAS No. Statement of Compliance All facilities under th compliance certificat Source of Emission Redu Name Location Address	he ownership of ion requirements ction Credit - Fa	this "ownership/f s under Section 11	irm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am	PERMIT ID	able requirements and or are meeting the sche	state regulations including any dule of a consent order.
CAS No. Statement of Compliance All facilities under th compliance certificat Source of Emission Redu Name Location Address City / Town / D	 ne ownership of ion requirements ction Credit - Fa Village	this "ownership/f s under Section 11	irm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am	PERMIT ID		
CAS No. Statement of Compliance All facilities under th compliance certificat Source of Emission Redu Name Location Address	he ownership of ion requirements ction Credit - Fa	this "ownership/f s under Section 11	irm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am	PERMIT ID	able requirements and or are meeting the sche	state regulations including any dule of a consent order.
CAS No. Statement of Compliance All facilities under th compliance certificat Source of Emission Redu Name Location Address City / □ Town / □ Emission Unit -	 ne ownership of ion requirements ction Credit - Fa Village	f this "ownership/f s under Section 11- cility	irm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am	PERMIT ID	able requirements and or are meeting the sche - Zip ERC (lbs/yr)	
CAS No. Statement of Compliance All facilities under th compliance certificat Source of Emission Redu Name Location Address City / Town / D	 ne ownership of ion requirements ction Credit - Fa Village	this "ownership/f s under Section 11- cility	irm" are operating <u>in complian</u> 4(a)(3) of the Clean Air Act Am	PERMIT ID	able requirements and or are meeting the sche - Zip ERC (lbs/yr)	

 P.E. Certification (form attached) List of Exempt Activities (form attached) Plot Plan Methods Used to Determine Compliance (form attached) Calculations Air Quality Model (//) Confidentiality Justification Ambient Air Monitoring Plan (/ /) Stack Test Protocols/Reports (/ /) Continuous Emissions Monitoring Plans/QA/QC (/ /) MACT Demonstration (/ /) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 List of Exempt Activities (form attached) Plot Plan Methods Used to Determine Compliance (form attached) Calculations Air Quality Model (//) Confidentiality Justification Ambient Air Monitoring Plan (//) Stack Test Protocols/Reports (//) Continuous Emissions Monitoring Plans/QA/QC (//) MACT Demonstration (/) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Plot Plan Methods Used to Determine Compliance (form attached) Calculations Air Quality Model (//) Confidentiality Justification Ambient Air Monitoring Plan (/) Stack Test Protocols/Reports (/ /) Continuous Emissions Monitoring Plans/QA/QC (/ /) MACT Demonstration (/ /) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Methods Used to Determine Compliance (form attached) Calculations Air Quality Model (//) Confidentiality Justification Ambient Air Monitoring Plan (//) Stack Test Protocols/Reports (//) Continuous Emissions Monitoring Plans/QA/QC (//) Continuous Emissions Monitoring Plans/QA/QC (//) MACT Demonstration (//) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Calculations Air Quality Model (//) Confidentiality Justification Ambient Air Monitoring Plan (/ /) Stack Test Protocols/Reports (/ /) Continuous Emissions Monitoring Plans/QA/QC (/ /) Continuous Emissions Monitoring Plans/QA/QC (/ /) MACT Demonstration (/ /) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Air Quality Model (//) Confidentiality Justification Ambient Air Monitoring Plan (//) Stack Test Protocols/Reports (//) Continuous Emissions Monitoring Plans/QA/QC (//) Continuous Emissions Monitoring Plans/QA/QC (/) MACT Demonstration (//) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Confidentiality Justification Ambient Air Monitoring Plan (/ /) Stack Test Protocols/Reports (/ /) Continuous Emissions Monitoring Plans/QA/QC (/ /) MACT Demonstration (/ /) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Ambient Air Monitoring Plan (/) Stack Test Protocols/Reports (//) Continuous Emissions Monitoring Plans/QA/QC (//) MACT Demonstration (//) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Stack Test Protocols/Reports (/ /) Continuous Emissions Monitoring Plans/QA/QC (/ /) MACT Demonstration (/ /) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Continuous Emissions Monitoring Plans/QA/QC (/) MACT Demonstration (/) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 MACT Demonstration (/ /) Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Operational Flexibility: Description of Alternative Operating Scenarios and Protocols Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Title IV: Application/Registration ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 ERC Quantification (form attached) Use of ERC(s) (form attached) Baseline Period Demonstration
 Use of ERC(s) (form attached) Baseline Period Demonstration
Baseline Period Demonstration
Analysis of Contemporaneous Emission Increase/Decrease
□ LAER Demonstration (/)
□ BACT Demonstration (/)
□ Other Document(s):(/ / _)
(/ / _)

P.E Certification

I certify under penalty of law that I have personally examined, and am familiar with, the statements and information submitted in this document and all its attachments as they pertain to the <u>practice of</u> <u>engineering</u>. This is defined as the performance of a professional service such as consultation, investigation, evaluation, planning, design or supervision of construction or operation in connection with any utilities, structures, buildings, machines, equipment, processes, works, or projects wherein the safeguarding of life, health and property is concerned, when such service or work requires the application of engineering principals and data. Based on my inquiry of those individuals with primary responsibility for obtaining such information, I certify that the statements and information are to the best of my knowledge and belief true, accurate and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

Michael J. Mann, P.E.

Signature of P.E.

Date ____ / ___ /

NYS License No.

Phone (716) 834-8932

APPENDIX B LandGEM v3.02 Report

Summary Report

Landfill Name or Identifier: Hyland Landfill - 2011 Title V Modification

Date: Wednesday, February 09, 2011

Description/Comments:

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

 Q_{CH4} = annual methane generation in the year of the calculation (m^3 /year) i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year⁻¹)

 L_o = potential methane generation capacity (m^3/Mg)

 $\begin{array}{l} M_i = mass \; of \; waste \; accepted \; in \; the \; i^{th} \; year \; (Mg) \\ t_{ij} = age \; of \; the \; j^{th} \; section \; of \; waste \; mass \; M_i \; accepted \; in \; the \; i^{th} \; year \; (decimal \; years , \; e.g., \; 3.2 \; years) \end{array}$

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfillg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

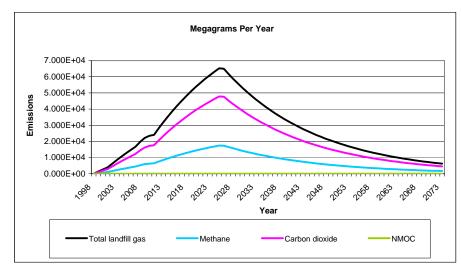
LANDFILL CHARACTERISTICS		
Landfill Open Year	1998	
Landfill Closure Year (with 80-year limit)	2025	
Actual Closure Year (without limit)	2025	
Have Model Calculate Closure Year?	Yes	
Waste Design Capacity	9,567,778	short tons
MODEL PARAMETERS		
Methane Generation Rate, k	0.050	year ⁻¹
Potential Methane Generation Capacity, L_o	100	m ³ /Mg
NMOC Concentration	211	ppmv as hexane
Methane Content	50	% by volume

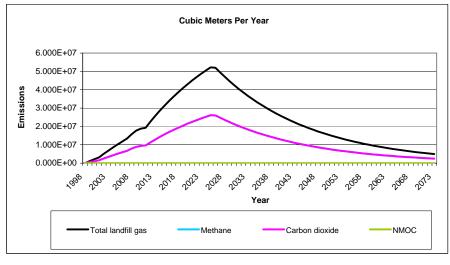
GASES / POLLUTANTS SELE	CTED
Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

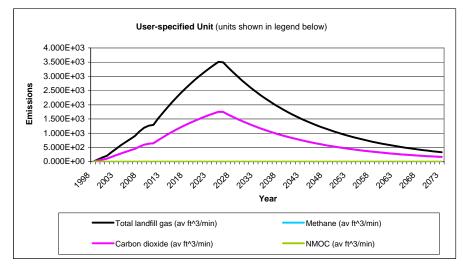
WASTE ACCEPTANCE RATES

	Waste Acc		Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1998	112,387	123,626	0	0	
1999	112,387	123,626	112,387	123,626	
2000	112,387	123,626	224,774	247,251	
2001	208,895	229,784	337,161	370,877	
2002	204,673	225,140	546,055	600,661	
2003	217,893	239,682	750,728	825,801	
2004	209,612	230,573	968,621	1,065,483	
2005	214,460	235,906	1,178,233	1,296,056	
2006	224,391	246,830	1,392,693	1,531,962	
2007	310,784	341,862	1,617,084	1,778,792	
2008	277,865	305,652	1,927,867	2,120,654	
2009	194,805	214,285	2,205,733	2,426,306	
2010	143,926	158,319	2,400,537	2,640,591	
2011	422,727	465,000	2,544,464	2,798,910	
2012	422,727	465,000	2,967,191	3,263,910	
2013	422,727	465,000	3,389,918	3,728,910	
2014	422,727	465,000	3,812,645	4,193,910	
2015	422,727	465,000	4,235,373	4,658,910	
2016	422,727	465,000	4,658,100	5,123,910	
2017	422,727	465,000	5,080,827	5,588,910	
2018	422,727	465,000	5,503,555	6,053,910	
2019	422,727	465,000	5,926,282	6,518,910	
2020	422,727	465,000	6,349,009	6,983,910	
2021	422,727	465,000	6,771,736	7,448,910	
2022	422,727	465,000	7,194,464	7,913,910	
2023	422,727	465,000	7,617,191	8,378,910	
2024	422,727	465,000	8,039,918	8,843,910	
2025	235,334	258,868	8,462,645	9,308,910	
2026	0	0	8,697,980	9,567,778	
2027	0	0	8,697,980	9,567,778	
2028	0	0	8,697,980	9,567,778	
2029	0	0	8,697,980	9,567,778	
2030	0	0	8,697,980	9,567,778	
2031	0	0	8,697,980	9,567,778	
2032	0	0	8,697,980	9,567,778	
2033	0	0	8,697,980	9,567,778	
2034	0	0	8,697,980	9,567,778	
2035	0	0	8,697,980	9,567,778	
2036	0	0	8,697,980	9,567,778	
2037	0	0	8,697,980	9,567,778	

WASTE ACCEPTANCE RATES (Continued)


Year	Waste Ac	cepted	Waste-In-Place		
rear	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
2038	0	0	8,697,980	9,567,778	
2039	0	0	8,697,980	9,567,778	
2040	0	0	8,697,980	9,567,778	
2041	0	0	8,697,980	9,567,778	
2042	0	0	8,697,980	9,567,778	
2043	0	0	8,697,980	9,567,778	
2044	0	0	8,697,980	9,567,778	
2045	0	0	8,697,980	9,567,778	
2046	0	0	8,697,980	9,567,778	
2047	0	0	8,697,980	9,567,778	
2048	0	0	8,697,980	9,567,778	
2049	0	0	8,697,980	9,567,778	
2050	0	0	8,697,980	9,567,778	
2051	0	0	8,697,980	9,567,778	
2052	0	0	8,697,980	9,567,778	
2053	0	0	8,697,980	9,567,778	
2054	0	0	8,697,980	9,567,778	
2055	0	0	8,697,980	9,567,778	
2056	0	0	8,697,980	9,567,778	
2057	0	0	8,697,980	9,567,778	
2058	0	0	8,697,980	9,567,778	
2059	0	0	8,697,980	9,567,778	
2060	0	0	8,697,980	9,567,778	
2061	0	0	8,697,980	9,567,778	
2062	0	0	8,697,980	9,567,778	
2063	0	0	8,697,980	9,567,778	
2064	0	0	8,697,980	9,567,778	
2065	0	0	8,697,980	9,567,778	
2066	0	0	8,697,980	9,567,778	
2067	0	0	8,697,980	9,567,778	
2068	0	0	8,697,980	9,567,778	
2069	0	0	8,697,980	9,567,778	
2070	0	0	8,697,980	9,567,778	
2071	0	0	8,697,980	9,567,778	
2072	0	0	8,697,980	9,567,778	
2073	0	0	8,697,980	9,567,778	
2074	0	0	8,697,980	9,567,778	
2075	0	0	8,697,980	9,567,778	
2076	0	0	8,697,980	9,567,778	
2077	0	0	8,697,980	9,567,778	


Concentration (pmv) Concentration (pmv) Concentration (pmv) Concentration (pmv) Molecular Weight (pmv) get Methane 1:10:4 1:10:4 1:10:4 1:10:4 Image: Second Control (pmv) 0.00 86:18 1:10:4 1:10:4 Image: Second Control (pmt) 0.48 1:33:41 1:10:4 1:10:4 Image: Second Control (pmt) 0.48 1:33:41 1:10:4 1:10:4 Image: Second Control (pmt) 1:10:4 1:10:4 1:10:4 1:10:4 1:10:4 1:10:4 1:10:4 1:10:4		Total landfill gas				
Set Dial landfil gas Dial landfil gas Dial landfil gas Methane 16.04 16.04 Carbon dioxide 44.00 86.18 1.1.1-Trichloreethane 16.04 44.01 Interaction dioxide 44.00 86.18 1.1.1-Trichloreethane 1.1.1 167.85 I.1.1-Trichloreethane 1.1.1 167.85 1.1.1-Dichloreethane 1.1.1 167.85 1.1-Dichloreethane 1.1.1 167.85 (ethylidene dichloride) - 44.07.0C 96.94 1.2-Dichloreethane 1.2.Dichloreethane 1.2.Dichloreethane (ethylidene dichloride) - 0.41 98.96 1.2-Dichloreethane 1.2.Dichloreethane 1.2.Dichloreethane (ethylidene dichloride) - 0.41 98.96 1.2-Dichloreethane 0.41 1.9		Total landfill gas	(ppmv)			Mologulariation
gg Methane 16.04 Carbon dioxide 44.01 NMOC 4,000 NMOC 4,000 HAP 0.48 1,1,1.71r.Khoroethane - 1 HAP/VOC 1.1 1,1,2.2- Tetrachloroethane - HAP/VOC 1.1 1,1.Dichloroethane (div)didene dichlonde) - HAP/VOC 2.4 1,1.2-Dichloroethane (intylidene dichlonde) - HAP/VOC 0.20 1,2-Dichloroethane (intylidene dichlonde) - HAP/VOC 0.41 1,2-Dichloroethane (roroylene dichlonde) - HAP/VOC 0.41 1,2-Dichloroethane (roroylene dichlonde) - HAP/VOC 0.18 112.99 2-Propanol (isopropyl alcoho) - VOC 50 Acetone 7.0 Berzene - No o' Uhrnown Co-disposal - HAP/VOC 1.9 Butane - VOC 5.0				0	(ppmv)	Molecular Weight
NMOC 4,000 86.18 1,1,1-Trichloroethane (methyl chloroform) - HAP 0.48 133.41 1,1,2,2 Tetrachloroethane - HAP/VOC 1.1 167.85 1,1-Dichloroethane ((thylidene dichloride) - HAP/VOC 2.4 98.97 1,1-Dichloroethane (thylidene dichloride) - HAP/VOC 0.20 96.94 1,2-Dichloroethane (thylidene dichloride) - HAP/VOC 0.41 98.96 1,2-Dichloroethane (thylidene dichloride) - HAP/VOC 0.41 98.96 1,2-Dichloroethane (propylene dichloride) - HAP/VOC 0.18 112.99 2-Propanol (isopropyl alcohol) - VOC 50 60.11 Acetone 7.0 58.08 Acrylonitrile - HAP/VOC 1.9 78.11 Benzene - No or Unknown Co-disposal - HAP/VOC 11 78.11 Benzene - No or Unknown Co-disposal - HAP/VOC 11 78.11 Benzene - VOC 5.0 58.12 Carbon tetrachloride - Carbon disulfide - Chorodichloromethane - VOC 1.4 1.0 Carbon tetrachloride - HAP/VOC 0.49 60.07 Carbon tetrachloride - HAP/VOC 0.25 112.56<						
NMOC 4.000 86.18 1.1.1-Tichloroethane (methyl chloroform) - HAP 0.48 133.41 1.1.2.2: Tetrachloroethane - HAPA/VOC 1.1 167.85 1.1 1.1.1-Dichloroethane ((ethylidene dichloride) - HAPA/OC 2.4 98.97 1.1 1.1-Dichloroethane (ethylidene dichloride) - HAPA/OC 0.20 96.94 1.4 1.2-Dichloroethane (ethylene dichloride) - HAPA/OC 0.41 98.96 1.4 1.2-Dichloroethane (ethylene dichloride) - HAPA/OC 0.41 98.96 1.2 2-Propanol (isopropul alcohol) - VOC 5.0 60.11 1.2.99 2-Propanol (isopropul alcohol) - VOC 5.0 60.11 1.4 Acetone 7.0 58.08 1.4 Acrylonitrile - HAP/VOC 1.9 78.11 1.9 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 1.9 Benzene - No or Unknown Co-disposal - HAP/VOC 1.1 78.11 1.9 Benzene - VOC 5.0 58.12 1.0 Carbon tetrachloride - Carbon slufide - 0.58 76.13 1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
II.1.Trichloroethane (methyl choroform) - HAP 0.48 133.41 I.1.2.2 Tetrachloroethane - HAP/VOC 1.1 167.85 I.1.Tolkioroethane (Hylidene dichloride) - HAP/VOC 2.4 98.97 I.1.Tolkioroethane (vinylidene dichloride) - HAP/VOC 0.20 96.94 I.2.Dichloroethane (ethylene dichloride) - HAP/VOC 0.41 98.96 I.2.Dichloroethane (ethylene dichloride) - HAP/VOC 0.41 98.96 I.2.Dichloroethane (ethylene dichloride) - HAP/VOC 0.18 112.99 2.Propanol (isopropyl alcohol) - VOC 0.18 112.99 2.Propanol (isopropyl alcohol) - VOC 50 60.11 Acetone 7.0 58.06 Acrylonitrile - HAP/VOC 1.9 78.11 Bromodichloromethane - VOC 3.1 163.83 Butane - VOC 5.0 58.12 Carbon monoxide 140 28.01 Carbon monoxide 1.40 28.01 Carbon monoxide 0.45 76.13 Carbon monoxide 0.49 60.07 Chloroethane (Hyl) Chloroethane (Hyl) 1.3 64.52 <td></td> <td></td> <td>4 000</td> <td></td> <td></td> <td></td>			4 000			
Sector Construction Construction HAP 0.48 133.41 1,1,2,2 Tetrachloroethane 1.1 HAP/VOC 1.1 167.85 1,1-Dichloroethane 98.97 (intylidene dichloride) - 4.4 HAP/VOC 0.20 96.94 1,1-Dichloroethane (intylidene chloride) - (intylidene chloride) - 0.20 HAP/VOC 0.20 96.94 1,2-Dichloroethane (intylidene chloride) - (intylidene chloride) - (intylidene chloride) - HAP/VOC 0.41 98.96 1,2-Dichloroptopane (intylidene chloride) - (propylene dichloride) - (intylidene chloride) - HAP/VOC 0.18 112.99 2-Propanol (isopropyl alcohol) - VOC 50 60.11 Acetone 7.0 58.08 Acrylonitrile - HAP/VOC 1.9 78.11 Benzene - Ox or 1.9 78.11 Benzene - Co-disposal - - - HAP/VOC 1.1 78.11			4,000	00.10		
HAP 0.48 133.41 HAP 0.48 133.41 HAP/VOC 1.1 167.85 11.1-Dichloroethane 1.1 167.85 (ethylidene dichloride) - 2.4 98.97 HAP/VOC 2.4 98.97 1.1-Dichloroethane (vinylidene choloride) - 1.4 HAP/VOC 0.20 96.94 1.2 1.2-Dichloroethane (vinylidene choloride) - 1.4 HAP/VOC 0.41 98.96 1.2 1.2-Dichloroethane (propylene dichloride) - 1.4 HAP/VOC 0.18 112.99 2-Proparol (isopropyl alcohol) - VOC 50 60.11 Acetone 7.0 58.08 Acrylonitrile - HAP/VOC 1.9 78.11 Benzene - No or Unknown Co-disposal - HAP/VOC HAP/VOC 1.1 78.11 Bromodichloromethane - 0.58 76.13 VOC 5.0 58.12 Carbon disulfide - 1.3 163.83 HAP						
Second State 1.1 167.85 1,1.2.2- Tetrachloroethane 1.1 167.85 1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC 2.4 98.97 1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC 0.20 96.94 1,2-Dichloroethane (ethylidene dichloride) - HAP/VOC 0.20 96.94 1,2-Dichloroethane (ethylidene dichloride) - HAP/VOC 0.41 98.96 1,2-Dichloroethane (ethylidene dichloride) - HAP/VOC 0.41 98.96 1,2-Dichloroethane (ethylidene dichloride) - HAP/VOC 0.18 112.99 2-Propanol (isopropyl alcohol) - VOC 50 60.11 40.20 Actrylonitrile - HAP/VOC 6.3 53.06 53.06 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 54.11 Benzene - Co-disposal - HAP/VOC 1.1 78.11 54.12 Carbon disulfide - VOC 5.0 58.12 54.12 Carbon tetrachloride - HAP/VOC 0.49 60.07 56.13 Carbon tetrachloride - HAP/VOC 0.49 60.07 56.44			0.48	133.41		
HAP/VOC 1.1 167.85 HAP/VOC 1.1 167.85 HAP/VOC 2.4 98.97 1.1-Dichloroethane (vinylidene chloride) - HAP/VOC 0.20 96.94 1.2-Dichloroethane (vinylidene chloride) - HAP/VOC 0.20 96.94 1.2-Dichloroppane (propylene dichloride) - HAP/VOC 0.41 98.96 1.2-Dichloroppane (propylene dichloride) - HAP/VOC 0.18 112.99 2-Propanol (isopropyl alcohol) - VOC 50 60.11 Acylonitrile - HAP/VOC 6.3 53.06 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 1.1 78.11 Bordene - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 1.40 28.01 Carbon disulfide - HAP/VOC 4.0E-03 153.84 Carbon vilide - HAP/VOC 0.49 60.07 Chloroethane (ethyl Chloride) - HAP/VOC 1.3 64.52 Chloroethane (ethyl Chloride) - HAP/VOC 1.2 50.49 Dichlorobenzene - (HAP						
11-Dichloroethane (ethylidene dichloride) - HAP/VOC 2.4 98.97 11-Dichloroethene (inylidene chloride) - HAP/VOC 0.20 96.94 1.2-Dichloroethane (ethylene dichloride) - HAP/VOC 0.41 98.96 1.2-Dichloroptopane (propylene dichloride) - HAP/VOC 0.41 98.96 1.2-Dichloroptopane (propylene dichloride) - HAP/VOC 0.18 112.99 2-Propanol (isopropyl alcohol) - VOC 50 60.11 Acetone 7.0 58.08 Acetone 7.0 58.08 Acetone 1.9 78.11 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 11 78.11 Bornodichloromethane - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 0.58 76.13 Carbon disulfide - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 0.25 112.56 Chlorodifluoromethane 1.3 86.47 Chlorodenzene - HAP/VOC 1.2 50.49 Chlorodifluoromethane 1.3 64.52 Chloro		Tetrachloroethane -				
Image: space of the system of the s		HAP/VOC	1.1	167.85		
HAP/VOC 2.4 98.97 1.1-Dichloroethene (vinyildene chloride) - HAP/VOC 0.20 96.94 1.2-Dichloroethane (ethylene dichloride) - HAP/VOC 0.41 98.96 1.2-Dichloroppane (propylene dichloride) - HAP/VOC 0.41 98.96 2-Propanol (isopropyl alcohol) - VOC 0.18 112.99 2-Propanol (isopropyl alcohol) - VOC 60.11 alcohol Acetone 7.0 58.08 Acrylonitrile - HAP/VOC 6.3 53.06 Benznen - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 11 78.11 Butane - VOC 5.0 58.12 Carbon monoxide 140 28.01 Carbon disulfide - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 1.3 64.52 Chlorodifluoromethane 1.3 64.52 Chlorodenzene - HAP/VOC 1.3 64.52 Chlorodifluoromethane 1.47 0.21 Dichlorodifluoromethane 1.47		,				
Status 1.1-Dickloroethene (innjidene chloride) - HAP/VOC 0.20 96.94 1.2-Dichloroethane (ethylene dickloride) - HAP/VOC 0.41 98.96						
Image: Section of the sectio			2.4	98.97		
Image: system of the						
Step (ethylene dichloride) - HAP/VOC 0.41 98.96 1.2-Dichloropropane (propylene dichloride) - HAP/VOC 0.18 112.99 2-Propanol (isopropyl alcohol) - VOC 50 60.11 Acetone 7.0 58.08 Acrylonitrile - HAP/VOC 6.3 53.06 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 1.1 78.11 Bornodichloromethane - VOC 3.1 163.83 Butane - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 0.58 76.13 Carbon monoxide 140 28.01 Carbon tetrachloride - HAP/VOC 0.49 60.07 HAP/VOC 0.25 112.56 Chlorodethane (ethyl chloride) - HAP/VOC 1.3 64.52 Chlorodifluoromethane - VOC 1.2 50.49 Dichlorobenzene - HAP/VOC 0.21 147 Dichlorodifluoromethane - VOC 0.21 147			0.20	96.94		
Image: system of the		(ethylene dichloride) - HAP/VOC	0.41	98.96		
alcohol) - VOC 50 60.11 Acetone 7.0 58.08 Acrylonitrile - HAP/VOC 6.3 53.06 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 11 78.11 Benzene - Co-disposal - HAP/VOC 11 78.11 Butane - VOC 3.1 163.83 Butane - VOC 0.58 76.13 Carbon monoxide 140 28.01 Carbon tranchoride - HAP/VOC 4.0E-03 153.84 Carbonyl sulfide - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 0.25 112.56 Chlorodifluoromethane 1.3 86.47 Chlorodentane (ethyl chloride) - HAP/VOC 1.3 64.52 Chlorobenzene - HAP/VOC 0.03 119.39 Chlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91		(propylene dichloride) - HAP/VOC	0.18	112.99		
Acetone 7.0 58.08 Acrylonitrile - HAP/VOC 6.3 53.06 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 1.9 78.11 Bromodichloromethane - VOC 3.1 163.83 Butane - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 0.58 76.13 Carbon monxide 140 28.01 Carbon tetrachloride - HAP/VOC 4.0E-03 153.84 Carbonyl sulfide - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 0.25 112.56 Chlorodifluoromethane 1.3 86.47 Chlorodethane (ethyl chloride) - HAP/VOC 1.3 64.52 Chlorobenzene - HAP/VOC 1.2 50.49 Dichlorodifluoromethane 16 120.91				00.44		
Acrylonitrile - HAP/VOC 6.3 53.06 Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 11 78.11 Bromodichloromethane - VOC 3.1 163.83 Butane - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 0.58 76.13 Carbon tottrachloride - HAP/VOC 4.0E-03 153.84 Carbon tetrachloride - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 0.25 112.56 Chlorodifluoromethane 1.3 86.47 Chlorodethane (ethyl chloride) - HAP/VOC 1.3 64.52 Chlorobenzene - HAP/VOC 1.2 50.49 Dichlorobenzene - (HAP/VOC) 0.21 147 Dichlorobenzene - (HAP/VOC) 0.21 147		,				
Benzene - No or Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 1.9 78.11 Bromodichloromethane - VOC 11 78.11 Butane - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 0.58 76.13 Carbon monoxide 140 28.01 Carbon monoxide 140 28.01 Carbon v/VOC 0.49 60.07 Carbonyl sulfide - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 0.25 112.56 Chlorodifluoromethane 1.3 86.47 Chlorodifluoromethane 1.3 64.52 Chlorodertane (ethyl chloride) - HAP/VOC 1.2 50.49 Dichlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91		Acetone	7.0	00.06		
Unknown Co-disposal - HAP/VOC 1.9 78.11 Benzene - Co-disposal - HAP/VOC 11 78.11 Bromodichloromethane - VOC 3.1 163.83 Butane - VOC 5.0 58.12 Carbon disulfide - HAP/VOC 0.58 76.13 Carbon monoxide 140 28.01 Carbon tetrachloride - HAP/VOC 4.0E-03 153.84 Carbonyl sulfide - HAP/VOC 0.49 60.07 Chlorobenzene - HAP/VOC 0.25 112.56 Chlorotifluoromethane 1.3 86.47 Chlorotofmane (ethyl chloride) + HAP/VOC 1.3 64.52 Chlorotom - HAP/VOC 0.03 119.39 Chloromethane - VOC 1.2 50.49 Dichlorobenzene - HAP/VOC 0.21 147		-	6.3	53.06		
Bit Map		Unknown Co-disposal - HAP/VOC	1.9	78.11		
Carbon disulfide - HAP/VOC0.5876.13Carbon monoxide14028.01Carbon tetrachloride - HAP/VOC4.0E-03153.84Carbonyl sulfide - HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chlorothane (ethyl chloride) - HAP/VOC1.364.52Chlorotofrom - HAP/VOC1.250.49Dichlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91		HAP/VOC	11	78.11		
Carbon disulfide - HAP/VOC0.5876.13Carbon monoxide14028.01Carbon tetrachloride - HAP/VOC4.0E-03153.84Carbonyl sulfide - HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chlorothane (ethyl chloride) - HAP/VOC1.364.52Chlorotofrom - HAP/VOC1.250.49Dichlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91	ant					
Carbon disulfide - HAP/VOC0.5876.13Carbon monoxide14028.01Carbon tetrachloride - HAP/VOC4.0E-03153.84Carbonyl sulfide - HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chlorothane (ethyl chloride) - HAP/VOC1.364.52Chlorotofrom - HAP/VOC1.250.49Dichlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91	lut					
Carbon disulfide - HAP/VOC0.5876.13Carbon monoxide14028.01Carbon tetrachloride - HAP/VOC4.0E-03153.84Carbonyl sulfide - HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chlorothane (ethyl chloride) - HAP/VOC1.364.52Chlorotofrum - HAP/VOC1.250.49Dichlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91	loc		5.0	58.12		
Carbon monoxide14028.01Carbon tetrachloride - HAP/VOC4.0E-03153.84Carbonyl sulfide - HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chlorodifluoromethane (ethyl chloride) - HAP/VOC1.364.52Chloroform - HAP/VOC0.03119.39Chlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91	-		0.50	70.40		
Carbon tetrachloride - HAP/VOC4.0E-03153.84Carbonyl sulfide - HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chloroethane (ethyl chloride) - HAP/VOC1.364.52Chloroform - HAP/VOC0.03119.39Chlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91						
HAP/VOC4.0E-03153.84Carbonyl sulfide - HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chlorothane (ethyl chloride) - HAP/VOC1.364.52Chloroform - HAP/VOC0.03119.39Chlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91			140	28.01		
HAP/VOC0.4960.07Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chloroethane (ethyl chloride) - HAP/VOC1.364.52Chloroform - HAP/VOC1.364.52Chloromethane - VOC1.250.49Dichlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91		HAP/VOC	4.0E-03	153.84		
Chlorobenzene - HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chloroethane (ethyl chloride) - HAP/VOC1.364.52Chloroform - HAP/VOC0.03119.39Chloromethane - VOC1.250.49Dichlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91		,	0.40	60.07		
HAP/VOC0.25112.56Chlorodifluoromethane1.386.47Chloroethane (ethyl chloride) - HAP/VOC1.364.52Chloroform - HAP/VOC0.03119.39Chloromethane - VOC1.250.49Dichlorobenzene - (HAP for para isomer/VOC)0.21147Dichlorodifluoromethane16120.91			0.49	00.07		
Chlorodifluoromethane 1.3 86.47 Chloroethane (ethyl chloride) - HAP/VOC 1.3 64.52 Chloroform - HAP/VOC 0.03 119.39 Chloromethane - VOC 1.2 50.49 Dichlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91			0.25	110 56		
Chloroethane (ethyl chloride) - HAP/VOC 1.3 64.52 Chloroform - HAP/VOC 0.03 119.39 Chloromethane - VOC 1.2 50.49 Dichlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91						
chloride) - HAP/VOC 1.3 64.52 Chloroform - HAP/VOC 0.03 119.39 Chloromethane - VOC 1.2 50.49 Dichlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91			1.0	17.00		
Chloroform - HAP/VOC 0.03 119.39 Chloromethane - VOC 1.2 50.49 Dichlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91 Dichlorofluoromethane - 0 0.021			1.3	64.52		
Chloromethane - VOC 1.2 50.49 Dichlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91 Dichlorofluoromethane - 16 120.91						
Dichlorobenzene - (HAP for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91 Dichlorofluoromethane - 16 120.91						
for para isomer/VOC) 0.21 147 Dichlorodifluoromethane 16 120.91 Dichlorofluoromethane - 16 120.91						
Dichlorodifluoromethane 16 120.91 Dichlorofluoromethane -			0.21	147		
Dichlorofluoromethane -		Dichlorodifluoromethane		100.04		
			٥١	120.91		
			26	102 92		
Dichloromethane			2.0	102.02		
(methylene chloride) -						
HAP 14 84.94		HAP	14	84.94		
Dimethyl sulfide (methyl		Dimethyl sulfide (methyl				
sulfide) - VOC 7.8 62.13		sulfide) - VOC				
Ethane 890 30.07			890			
		Ethanol - VOC	27	46.08		


Pollutant Parameters (Continued)

Gas / Poll	User-specified Pollutant Parameters:			
	Concentration	Concentration		
Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
Ethyl mercaptan	0.0	CO 40		
(ethanethiol) - VOC Ethylbenzene -	2.3	62.13		
HAP/VOC	4.6	106.16		
Ethylene dibromide -	4.0	100.10		
HAP/VOC	1.0E-03	187.88		
Fluorotrichloromethane -	1.02-03	107.00		
VOC	0.76	137.38		
Hexane - HAP/VOC	6.6	86.18		
Hydrogen sulfide	36	34.08		
Mercury (total) - HAP	2.9E-04	200.61		
Methyl ethyl ketone -	2.02 04	200.01		
HAP/VOC	7.1	72.11		
Methyl isobutyl ketone -				
HAP/VOC	1.9	100.16		
	1.0	100.10		
Methyl mercaptan - VOC	2.5	48.11		
Pentane - VOC	3.3	72.15		
Perchloroethylene	0.0	, 2.10		
(tetrachloroethylene) -				
HAP	3.7	165.83		
Propane - VOC	11	44.09		
t-1,2-Dichloroethene -		11.00		
VOC	2.8	96.94		
Toluene - No or		00101		
Unknown Co-disposal -				
HAP/VOC	39	92.13		
Toluene - Co-disposal -		02.10		
HAP/VOC	170	92.13		
Trichloroethylene	110	02.10		
(trichloroothono)				
HAP/VOC	2.8	131.40		
Vinyl chloride -	2.0	101.40		
HAP/VOC Vinyl chloride - HAP/VOC	7.3	62.50		
Xylenes - HAP/VOC	12	106.16		
Hydrogen sulfide			280.00	34.08
			200.00	0.000
Reduced sulfur as sulfur				
dioxide			285.00	64.07
			<u> </u>	

<u>Graphs</u>

Results

Year		Total landfill gas		Methane			
rear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
998	0	0	0	0	0	0	
999	1.372E+03	1.099E+06	7.384E+01	3.666E+02	5.495E+05	3.692E+01	
2000	2.678E+03	2.144E+06	1.441E+02	7.153E+02	1.072E+06	7.204E+01	
2001	3.920E+03	3.139E+06	2.109E+02	1.047E+03	1.569E+06	1.054E+02	
2002	6.280E+03	5.028E+06	3.379E+02	1.677E+03	2.514E+06	1.689E+02	
2003	8.473E+03	6.785E+06	4.559E+02	2.263E+03	3.392E+06	2.279E+02	
2004	1.072E+04	8.584E+06	5.768E+02	2.864E+03	4.292E+06	2.884E+02	
2005	1.276E+04	1.022E+07	6.864E+02	3.408E+03	5.108E+06	3.432E+02	
2006	1.475E+04	1.181E+07	7.938E+02	3.941E+03	5.907E+06	3.969E+02	
2007	1.677E+04	1.343E+07	9.025E+02	4.481E+03	6.716E+06	4.513E+02	
2008	1.975E+04	1.582E+07	1.063E+03	5.276E+03	7.908E+06	5.313E+02	
2009	2.218E+04	1.776E+07	1.193E+03	5.925E+03	8.881E+06	5.967E+02	
2010	2.348E+04	1.880E+07	1.263E+03	6.271E+03	9.400E+06	6.316E+02	
2011	2.409E+04	1.929E+07	1.296E+03	6.435E+03	9.646E+06	6.481E+02	
2012	2.808E+04	2.248E+07	1.511E+03	7.500E+03	1.124E+07	7.553E+02	
2013	3.187E+04	2.552E+07	1.715E+03	8.513E+03	1.276E+07	8.574E+02	
2014	3.548E+04	2.841E+07	1.909E+03	9.477E+03	1.420E+07	9.544E+02	
2015	3.891E+04	3.116E+07	2.094E+03	1.039E+04	1.558E+07	1.047E+03	
2016	4.218E+04	3.377E+07	2.269E+03	1.127E+04	1.689E+07	1.135E+03	
2017	4.528E+04	3.626E+07	2.436E+03	1.209E+04	1.813E+07	1.218E+03	
2018	4.823E+04	3.862E+07	2.595E+03	1.288E+04	1.931E+07	1.298E+03	
2019	5.104E+04	4.087E+07	2.746E+03	1.363E+04	2.044E+07	1.373E+03	
2020	5.372E+04	4.301E+07	2.890E+03	1.435E+04	2.151E+07	1.445E+03	
2021	5.626E+04	4.505E+07	3.027E+03	1.503E+04	2.252E+07	1.513E+03	
2022	5.868E+04	4.699E+07	3.157E+03	1.567E+04	2.349E+07	1.579E+03	
2023	6.098E+04	4.883E+07	3.281E+03	1.629E+04	2.441E+07	1.640E+03	
2024	6.317E+04	5.058E+07	3.399E+03	1.687E+04	2.529E+07	1.699E+03	
2025	6.525E+04	5.225E+07	3.511E+03	1.743E+04	2.612E+07	1.755E+03	
2026	6.494E+04	5.200E+07	3.494E+03	1.735E+04	2.600E+07	1.747E+03	
2027	6.177E+04	4.946E+07	3.324E+03	1.650E+04	2.473E+07	1.662E+03	
2028	5.876E+04	4.705E+07	3.161E+03	1.570E+04	2.353E+07	1.581E+03	
2029	5.589E+04	4.476E+07	3.007E+03	1.493E+04	2.238E+07	1.504E+03	
2030	5.317E+04	4.257E+07	2.861E+03	1.420E+04	2.129E+07	1.430E+03	
2031	5.058E+04	4.050E+07	2.721E+03	1.351E+04	2.025E+07	1.361E+03	
2032	4.811E+04	3.852E+07	2.588E+03	1.285E+04	1.926E+07	1.294E+03	
2033	4.576E+04	3.664E+07	2.462E+03	1.222E+04	1.832E+07	1.231E+03	
2034	4.353E+04	3.486E+07	2.342E+03	1.163E+04	1.743E+07	1.171E+03	
2035	4.141E+04	3.316E+07	2.228E+03	1.106E+04	1.658E+07	1.114E+03	
2036	3.939E+04	3.154E+07	2.119E+03	1.052E+04	1.577E+07	1.060E+03	
2037	3.747E+04	3.000E+07	2.016E+03	1.001E+04	1.500E+07	1.008E+03	
2038	3.564E+04	2.854E+07	1.918E+03	9.520E+03	1.427E+07	9.588E+02	
2039	3.390E+04	2.715E+07	1.824E+03	9.055E+03	1.357E+07	9.120E+02	
2040	3.225E+04	2.582E+07	1.735E+03	8.614E+03	1.291E+07	8.675E+02	
2041	3.068E+04	2.456E+07	1.650E+03	8.194E+03	1.228E+07	8.252E+02	
2042	2.918E+04	2.337E+07	1.570E+03	7.794E+03	1.168E+07	7.850E+02	
2043	2.776E+04	2.223E+07	1.493E+03	7.414E+03	1.111E+07	7.467E+02	
2044	2.640E+04	2.114E+07	1.421E+03	7.052E+03	1.057E+07	7.103E+02	
2045	2.511E+04	2.011E+07	1.351E+03	6.708E+03	1.006E+07	6.756E+02	
2046	2.389E+04	1.913E+07	1.285E+03	6.381E+03	9.565E+06	6.427E+02	
2047	2.272E+04	1.820E+07	1.223E+03	6.070E+03	9.098E+06	6.113E+02	

Year		Total landfill gas			Methane	
rear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2048	2.162E+04	1.731E+07	1.163E+03	5.774E+03	8.655E+06	5.815E+02
049	2.056E+04	1.647E+07	1.106E+03	5.492E+03	8.233E+06	5.532E+02
2050	1.956E+04	1.566E+07	1.052E+03	5.225E+03	7.831E+06	5.262E+02
2051	1.861E+04	1.490E+07	1.001E+03	4.970E+03	7.449E+06	5.005E+02
2052	1.770E+04	1.417E+07	9.522E+02	4.727E+03	7.086E+06	4.761E+02
2053	1.683E+04	1.348E+07	9.058E+02	4.497E+03	6.740E+06	4.529E+02
2054	1.601E+04	1.282E+07	8.616E+02	4.277E+03	6.412E+06	4.308E+02
2055	1.523E+04	1.220E+07	8.196E+02	4.069E+03	6.099E+06	4.098E+02
2056	1.449E+04	1.160E+07	7.796E+02	3.870E+03	5.801E+06	3.898E+02
2057	1.378E+04	1.104E+07	7.416E+02	3.682E+03	5.519E+06	3.708E+02
2058	1.311E+04	1.050E+07	7.054E+02	3.502E+03	5.249E+06	3.527E+02
2059	1.247E+04	9.987E+06	6.710E+02	3.331E+03	4.993E+06	3.355E+02
2060	1.186E+04	9.500E+06	6.383E+02	3.169E+03	4.750E+06	3.191E+02
2061	1.128E+04	9.036E+06	6.072E+02	3.014E+03	4.518E+06	3.036E+02
2062	1.073E+04	8.596E+06	5.775E+02	2.867E+03	4.298E+06	2.888E+02
2063	1.021E+04	8.176E+06	5.494E+02	2.727E+03	4.088E+06	2.747E+02
		7.778E+06			3.889E+06	
2064	9.713E+03		5.226E+02	2.594E+03		2.613E+02
2065	9.239E+03	7.398E+06	4.971E+02	2.468E+03	3.699E+06	2.485E+02
2066	8.789E+03	7.038E+06	4.729E+02	2.348E+03	3.519E+06	2.364E+02
2067	8.360E+03	6.694E+06	4.498E+02	2.233E+03	3.347E+06	2.249E+02
2068	7.952E+03	6.368E+06	4.279E+02	2.124E+03	3.184E+06	2.139E+02
2069	7.564E+03	6.057E+06	4.070E+02	2.021E+03	3.029E+06	2.035E+02
2070	7.196E+03	5.762E+06	3.871E+02	1.922E+03	2.881E+06	1.936E+02
2071	6.845E+03	5.481E+06	3.683E+02	1.828E+03	2.740E+06	1.841E+02
2072	6.511E+03	5.214E+06	3.503E+02	1.739E+03	2.607E+06	1.751E+02
2073	6.193E+03	4.959E+06	3.332E+02	1.654E+03	2.480E+06	1.666E+02
2074	5.891E+03	4.717E+06	3.170E+02	1.574E+03	2.359E+06	1.585E+02
2075	5.604E+03	4.487E+06	3.015E+02	1.497E+03	2.244E+06	1.508E+02
2076	5.331E+03	4.268E+06	2.868E+02	1.424E+03	2.134E+06	1.434E+02
2077	5.071E+03	4.060E+06	2.728E+02	1.354E+03	2.030E+06	1.364E+02
2078	4.823E+03	3.862E+06	2.595E+02	1.288E+03	1.931E+06	1.298E+02
2079	4.588E+03	3.674E+06	2.468E+02	1.226E+03	1.837E+06	1.234E+02
2080	4.364E+03	3.495E+06	2.348E+02	1.166E+03	1.747E+06	1.174E+02
2081	4.151E+03	3.324E+06	2.234E+02	1.109E+03	1.662E+06	1.117E+02
2082	3.949E+03	3.162E+06	2.125E+02	1.055E+03	1.581E+06	1.062E+02
2083	3.756E+03	3.008E+06	2.021E+02	1.003E+03	1.504E+06	1.011E+02
2084	3.573E+03	2.861E+06	1.922E+02	9.544E+02	1.431E+06	9.612E+01
2085	3.399E+03	2.722E+06	1.829E+02	9.079E+02	1.361E+06	9.144E+01
2086	3.233E+03	2.589E+06	1.740E+02	8.636E+02	1.294E+06	8.698E+01
2087	3.075E+03	2.463E+06	1.655E+02	8.215E+02	1.231E+06	8.273E+01
2088	2.925E+03	2.343E+06	1.574E+02	7.814E+02	1.171E+06	7.870E+01
2089	2.783E+03	2.228E+06	1.497E+02	7.433E+02	1.114E+06	7.486E+01
2090	2.647E+03	2.120E+06	1.424E+02	7.071E+02	1.060E+06	7.121E+01
2091	2.518E+03	2.016E+06	1.355E+02	6.726E+02	1.008E+06	6.774E+01
2092	2.395E+03	1.918E+06	1.289E+02	6.398E+02	9.590E+05	6.443E+01
2093	2.278E+03	1.824E+06	1.226E+02	6.086E+02	9.122E+05	6.129E+01
2094	2.167E+03	1.735E+06	1.166E+02	5.789E+02	8.677E+05	5.830E+01
2095	2.062E+03	1.651E+06	1.109E+02	5.507E+02	8.254E+05	5.546E+01
096	1.961E+03	1.570E+06	1.055E+02	5.238E+02	7.851E+05	5.275E+01
097	1.865E+03	1.494E+06	1.004E+02	4.983E+02	7.468E+05	5.018E+01
2098	1.774E+03	1.494L+00	9.547E+01	4.985E+02 4.740E+02	7.104E+05	4.773E+01

Year		Total landfill gas		Methane			
rear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2099	1.688E+03	1.352E+06	9.081E+01	4.508E+02	6.758E+05	4.541E+01	
2100	1.606E+03	1.286E+06	8.638E+01	4.289E+02	6.428E+05	4.319E+01	
2101	1.527E+03	1.223E+06	8.217E+01	4.079E+02	6.115E+05	4.108E+01	
2102	1.453E+03	1.163E+06	7.816E+01	3.880E+02	5.816E+05	3.908E+01	
2103	1.382E+03	1.107E+06	7.435E+01	3.691E+02	5.533E+05	3.717E+01	
2104	1.315E+03	1.053E+06	7.072E+01	3.511E+02	5.263E+05	3.536E+01	
2105	1.250E+03	1.001E+06	6.727E+01	3.340E+02	5.006E+05	3.364E+01	
2106	1.189E+03	9.524E+05	6.399E+01	3.177E+02	4.762E+05	3.200E+01	
2107	1.131E+03	9.060E+05	6.087E+01	3.022E+02	4.530E+05	3.044E+01	
2108	1.076E+03	8.618E+05	5.790E+01	2.875E+02	4.309E+05	2.895E+01	
2109	1.024E+03	8.198E+05	5.508E+01	2.735E+02	4.099E+05	2.754E+01	
2110	9.738E+02	7.798E+05	5.239E+01	2.601E+02	3.899E+05	2.620E+01	
2111	9.263E+02	7.417E+05	4.984E+01	2.474E+02	3.709E+05	2.492E+01	
2112	8.811E+02	7.056E+05	4.741E+01	2.354E+02	3.528E+05	2.370E+01	
2113	8.382E+02	6.712E+05	4.510E+01	2.239E+02	3.356E+05	2.255E+01	
2114	7.973E+02	6.384E+05	4.290E+01	2.130E+02	3.192E+05	2.145E+01	
2115	7.584E+02	6.073E+05	4.080E+01	2.026E+02	3.036E+05	2.040E+01	
2116	7.214E+02	5.777E+05	3.881E+01	1.927E+02	2.888E+05	1.941E+01	
2117	6.862E+02	5.495E+05	3.692E+01	1.833E+02	2.748E+05	1.846E+01	
2118	6.528E+02	5.227E+05	3.512E+01	1.744E+02	2.614E+05	1.756E+01	
2119	6.209E+02	4.972E+05	3.341E+01	1.659E+02	2.486E+05	1.670E+01	
2120	5.906E+02	4.730E+05	3.178E+01	1.578E+02	2.365E+05	1.589E+01	
2121	5.618E+02	4.499E+05	3.023E+01	1.501E+02	2.249E+05	1.511E+01	
2122	5.344E+02	4.280E+05	2.875E+01	1.428E+02	2.140E+05	1.438E+01	
2123	5.084E+02	4.071E+05	2.735E+01	1.358E+02	2.035E+05	1.368E+01	
2124	4.836E+02	3.872E+05	2.602E+01	1.292E+02	1.936E+05	1.301E+01	
2125	4.600E+02	3.683E+05	2.475E+01	1.229E+02	1.842E+05	1.237E+01	
2126	4.376E+02	3.504E+05	2.354E+01	1.169E+02	1.752E+05	1.177E+01	
2127	4.162E+02	3.333E+05	2.239E+01	1.112E+02	1.666E+05	1.120E+01	
2128	3.959E+02	3.170E+05	2.130E+01	1.058E+02	1.585E+05	1.065E+01	
2129	3.766E+02	3.016E+05	2.026E+01	1.006E+02	1.508E+05	1.013E+01	
2130	3.582E+02	2.869E+05	1.927E+01	9.569E+01	1.434E+05	9.637E+00	
2131	3.408E+02	2.729E+05	1.833E+01	9.102E+01	1.364E+05	9.167E+00	
2132	3.242E+02	2.596E+05	1.744E+01	8.658E+01	1.298E+05	8.720E+00	
2133	3.083E+02	2.469E+05	1.659E+01	8.236E+01	1.235E+05	8.295E+00	
2134	2.933E+02	2.349E+05	1.578E+01	7.834E+01	1.174E+05	7.890E+00	
2135	2.790E+02	2.234E+05	1.501E+01	7.452E+01	1.117E+05	7.505E+00	
2136	2.654E+02	2.125E+05	1.428E+01	7.089E+01	1.063E+05	7.139E+00	
2137	2.524E+02	2.022E+05	1.358E+01	6.743E+01	1.011E+05	6.791E+00	
2138	2.401E+02	1.923E+05	1.292E+01	6.414E+01	9.615E+04	6.460E+00	

Year		Carbon dioxide		NMOC			
	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
998	0	0	0	0	0	0	
999	1.006E+03	5.495E+05	3.692E+01	8.312E-01	2.319E+02	1.558E-02	
000	1.963E+03	1.072E+06	7.204E+01	1.622E+00	4.525E+02	3.040E-02	
001	2.873E+03	1.569E+06	1.054E+02	2.374E+00	6.623E+02	4.450E-02	
2002	4.602E+03	2.514E+06	1.689E+02	3.803E+00	1.061E+03	7.129E-02	
2003	6.210E+03	3.392E+06	2.279E+02	5.131E+00	1.432E+03	9.618E-02	
2004	7.857E+03	4.292E+06	2.884E+02	6.492E+00	1.811E+03	1.217E-01	
2005	9.350E+03	5.108E+06	3.432E+02	7.726E+00	2.155E+03	1.448E-01	
2006	1.081E+04	5.907E+06	3.969E+02	8.935E+00	2.493E+03	1.675E-01	
2007	1.229E+04	6.716E+06	4.513E+02	1.016E+01	2.834E+03	1.904E-01	
2008	1.448E+04	7.908E+06	5.313E+02	1.196E+01	3.337E+03	2.242E-01	
2009	1.626E+04	8.881E+06	5.967E+02	1.343E+01	3.748E+03	2.518E-01	
2010	1.721E+04	9.400E+06	6.316E+02	1.422E+01	3.967E+03	2.665E-01	
2011	1.766E+04	9.646E+06	6.481E+02	1.459E+01	4.070E+03	2.735E-01	
2012	2.058E+04	1.124E+07	7.553E+02	1.701E+01	4.744E+03	3.188E-01	
2013	2.336E+04	1.276E+07	8.574E+02	1.930E+01	5.385E+03	3.618E-01	
2014	2.600E+04	1.420E+07	9.544E+02	2.149E+01	5.994E+03	4.028E-01	
2015	2.852E+04	1.558E+07	1.047E+03	2.357E+01	6.574E+03	4.417E-01	
2016	3.091E+04	1.689E+07	1.135E+03	2.554E+01	7.126E+03	4.788E-01	
2017	3.319E+04	1.813E+07	1.218E+03	2.742E+01	7.651E+03	5.140E-01	
2018	3.535E+04	1.931E+07	1.298E+03	2.921E+01	8.150E+03	5.476E-01	
2019	3.741E+04	2.044E+07	1.373E+03	3.091E+01	8.624E+03	5.795E-01	
2020	3.937E+04	2.151E+07	1.445E+03	3.253E+01	9.076E+03	6.098E-01	
2021	4.123E+04	2.252E+07	1.513E+03	3.407E+01	9.506E+03	6.387E-01	
2022	4.300E+04	2.349E+07	1.579E+03	3.554E+01	9.914E+03	6.661E-01	
2023	4.469E+04	2.441E+07	1.640E+03	3.693E+01	1.030E+04	6.922E-01	
2024	4.629E+04	2.529E+07	1.699E+03	3.826E+01	1.067E+04	7.171E-01	
2025	4.782E+04	2.612E+07	1.755E+03	3.952E+01	1.102E+04	7.407E-01	
2026	4.759E+04	2.600E+07	1.747E+03	3.933E+01	1.097E+04	7.372E-01	
2027	4.527E+04	2.473E+07	1.662E+03	3.741E+01	1.044E+04	7.013E-01	
2028	4.306E+04	2.353E+07	1.581E+03	3.559E+01	9.928E+03	6.671E-01	
2029	4.096E+04	2.238E+07	1.504E+03	3.385E+01	9.444E+03	6.345E-01	
2030	3.897E+04	2.129E+07	1.430E+03	3.220E+01	8.983E+03	6.036E-01	
2031	3.707E+04	2.025E+07	1.361E+03	3.063E+01	8.545E+03	5.741E-01	
2032	3.526E+04	1.926E+07	1.294E+03	2.914E+01	8.128E+03	5.461E-01	
2033	3.354E+04	1.832E+07	1.231E+03	2.771E+01	7.732E+03	5.195E-01	
2034	3.190E+04	1.743E+07	1.171E+03	2.636E+01	7.355E+03	4.942E-01	
2035	3.035E+04	1.658E+07	1.114E+03	2.508E+01	6.996E+03	4.701E-01	
2036	2.887E+04	1.577E+07	1.060E+03	2.385E+01	6.655E+03	4.471E-01	
2037	2.746E+04	1.500E+07	1.008E+03	2.269E+01	6.330E+03	4.253E-01	
2038	2.612E+04	1.427E+07	9.588E+02	2.158E+01	6.022E+03	4.046E-01	
2039	2.485E+04	1.357E+07	9.120E+02	2.053E+01	5.728E+03	3.849E-01	
2040	2.363E+04	1.291E+07	8.675E+02	1.953E+01	5.449E+03	3.661E-01	
2041	2.248E+04	1.228E+07	8.252E+02	1.858E+01	5.183E+03	3.482E-01	
2042	2.139E+04	1.168E+07	7.850E+02	1.767E+01	4.930E+03	3.313E-01	
2043	2.034E+04	1.111E+07	7.467E+02	1.681E+01	4.690E+03	3.151E-01	
2044	1.935E+04	1.057E+07	7.103E+02	1.599E+01	4.461E+03	2.997E-01	
2045	1.841E+04	1.006E+07	6.756E+02	1.521E+01	4.243E+03	2.851E-01	
2046	1.751E+04	9.565E+06	6.427E+02	1.447E+01	4.036E+03	2.712E-01	
2047	1.665E+04	9.098E+06	6.113E+02	1.376E+01	3.840E+03	2.580E-01	

Year		Carbon dioxide		NMOC			
rear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2048	1.584E+04	8.655E+06	5.815E+02	1.309E+01	3.652E+03	2.454E-01	
049	1.507E+04	8.233E+06	5.532E+02	1.245E+01	3.474E+03	2.334E-01	
050	1.433E+04	7.831E+06	5.262E+02	1.185E+01	3.305E+03	2.220E-01	
2051	1.364E+04	7.449E+06	5.005E+02	1.127E+01	3.144E+03	2.112E-01	
2052	1.297E+04	7.086E+06	4.761E+02	1.072E+01	2.990E+03	2.009E-01	
2053	1.234E+04	6.740E+06	4.529E+02	1.020E+01	2.844E+03	1.911E-01	
2054	1.174E+04	6.412E+06	4.308E+02	9.698E+00	2.706E+03	1.818E-01	
2055	1.116E+04	6.099E+06	4.098E+02	9.225E+00	2.574E+03	1.729E-01	
2056	1.062E+04	5.801E+06	3.898E+02	8.776E+00	2.448E+03	1.645E-01	
2057	1.010E+04	5.519E+06	3.708E+02	8.348E+00	2.329E+03	1.565E-01	
2058	9.609E+03	5.249E+06	3.527E+02	7.940E+00	2.215E+03	1.488E-01	
2059	9.140E+03	4.993E+06	3.355E+02	7.553E+00	2.107E+03	1.416E-01	
2060	8.695E+03	4.750E+06	3.191E+02	7.185E+00	2.004E+03	1.347E-01	
2061	8.271E+03	4.518E+06	3.036E+02	6.834E+00	1.907E+03	1.281E-01	
2062	7.867E+03	4.298E+06	2.888E+02	6.501E+00	1.814E+03	1.219E-01	
2063	7.483E+03	4.088E+06	2.747E+02	6.184E+00	1.725E+03	1.159E-01	
2064	7.119E+03	3.889E+06	2.613E+02	5.882E+00	1.641E+03	1.103E-01	
2065	6.771E+03	3.699E+06	2.485E+02	5.596E+00	1.561E+03	1.049E-01	
2066	6.441E+03	3.519E+06	2.364E+02	5.323E+00	1.485E+03	9.977E-02	
2067	6.127E+03	3.347E+06	2.249E+02	5.063E+00	1.412E+03	9.491E-02	
2068	5.828E+03	3.184E+06	2.139E+02	4.816E+00	1.344E+03	9.028E-02	
2069	5.544E+03	3.029E+06	2.035E+02	4.581E+00	1.278E+03	8.587E-02	
2070	5.274E+03	2.881E+06	1.936E+02	4.358E+00	1.216E+03	8.169E-02	
2071	5.016E+03	2.740E+06	1.841E+02	4.145E+00	1.156E+03	7.770E-02	
2072	4.772E+03	2.607E+06	1.751E+02	3.943E+00	1.100E+03	7.391E-02	
2073	4.539E+03	2.480E+06	1.666E+02	3.751E+00	1.046E+03	7.031E-02	
2074	4.318E+03	2.359E+06	1.585E+02	3.568E+00	9.954E+02	6.688E-02	
2075	4.107E+03	2.244E+06	1.508E+02	3.394E+00	9.468E+02	6.362E-02	
2076	3.907E+03	2.134E+06	1.434E+02	3.228E+00	9.006E+02	6.051E-02	
2077	3.716E+03	2.030E+06	1.364E+02	3.071E+00	8.567E+02	5.756E-02	
2078	3.535E+03	1.931E+06	1.298E+02	2.921E+00	8.149E+02	5.476E-02	
2079	3.363E+03	1.837E+06	1.234E+02	2.779E+00	7.752E+02	5.209E-02	
2080	3.199E+03	1.747E+06	1.174E+02	2.643E+00	7.374E+02	4.955E-02	
2081	3.043E+03	1.662E+06	1.117E+02	2.514E+00	7.014E+02	4.713E-02	
2082	2.894E+03	1.581E+06	1.062E+02	2.392E+00	6.672E+02	4.483E-02	
2083	2.753E+03	1.504E+06	1.011E+02	2.275E+00	6.347E+02	4.264E-02	
2084	2.619E+03	1.431E+06	9.612E+01	2.164E+00	6.037E+02	4.056E-02	
2085	2.491E+03	1.361E+06	9.144E+01	2.058E+00	5.743E+02	3.859E-02	
2086	2.370E+03	1.294E+06	8.698E+01	1.958E+00	5.463E+02	3.670E-02	
2087	2.254E+03	1.231E+06	8.273E+01	1.863E+00	5.196E+02	3.491E-02	
2088	2.144E+03	1.171E+06	7.870E+01	1.772E+00	4.943E+02	3.321E-02	
2089	2.039E+03	1.114E+06	7.486E+01	1.685E+00	4.702E+02	3.159E-02	
2090	1.940E+03	1.060E+06	7.121E+01	1.603E+00	4.472E+02	3.005E-02	
2091	1.845E+03	1.008E+06	6.774E+01	1.525E+00	4.254E+02	2.858E-02	
2092	1.755E+03	9.590E+05	6.443E+01	1.451E+00	4.047E+02	2.719E-02	
2093	1.670E+03	9.122E+05	6.129E+01	1.380E+00	3.850E+02	2.586E-02	
2094	1.588E+03	8.677E+05	5.830E+01	1.313E+00	3.662E+02	2.460E-02	
2095	1.511E+03	8.254E+05	5.546E+01	1.249E+00	3.483E+02	2.340E-02	
2096	1.437E+03	7.851E+05	5.275E+01	1.188E+00	3.313E+02	2.226E-02	
2097	1.367E+03	7.468E+05	5.018E+01	1.130E+00	3.152E+02	2.118E-02	
2098	1.300E+03	7.104E+05	4.773E+01	1.075E+00	2.998E+02	2.014E-02	

Year		Carbon dioxide		NMOC		
rear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2099	1.237E+03	6.758E+05	4.541E+01	1.022E+00	2.852E+02	1.916E-02
2100	1.177E+03	6.428E+05	4.319E+01	9.724E-01	2.713E+02	1.823E-02
2101	1.119E+03	6.115E+05	4.108E+01	9.249E-01	2.580E+02	1.734E-02
2102	1.065E+03	5.816E+05	3.908E+01	8.798E-01	2.455E+02	1.649E-02
2103	1.013E+03	5.533E+05	3.717E+01	8.369E-01	2.335E+02	1.569E-02
2104	9.634E+02	5.263E+05	3.536E+01	7.961E-01	2.221E+02	1.492E-02
2105	9.164E+02	5.006E+05	3.364E+01	7.573E-01	2.113E+02	1.419E-02
2106	8.717E+02	4.762E+05	3.200E+01	7.203E-01	2.010E+02	1.350E-02
2107	8.292E+02	4.530E+05	3.044E+01	6.852E-01	1.912E+02	1.284E-02
2108	7.888E+02	4.309E+05	2.895E+01	6.518E-01	1.818E+02	1.222E-02
2109	7.503E+02	4.099E+05	2.754E+01	6.200E-01	1.730E+02	1.162E-02
2110	7.137E+02	3.899E+05	2.620E+01	5.898E-01	1.645E+02	1.105E-02
2111	6.789E+02	3.709E+05	2.492E+01	5.610E-01	1.565E+02	1.052E-02
2112	6.458E+02	3.528E+05	2.370E+01	5.336E-01	1.489E+02	1.000E-02
2113	6.143E+02	3.356E+05	2.255E+01	5.076E-01	1.416E+02	9.515E-03
2114	5.843E+02	3.192E+05	2.145E+01	4.829E-01	1.347E+02	9.051E-03
2115	5.558E+02	3.036E+05	2.040E+01	4.593E-01	1.281E+02	8.610E-03
2116	5.287E+02	2.888E+05	1.941E+01	4.369E-01	1.219E+02	8.190E-03
2117	5.029E+02	2.748E+05	1.846E+01	4.156E-01	1.159E+02	7.790E-03
2118	4.784E+02	2.614E+05	1.756E+01	3.953E-01	1.103E+02	7.410E-03
2119	4.551E+02	2.486E+05	1.670E+01	3.761E-01	1.049E+02	7.049E-03
2120	4.329E+02	2.365E+05	1.589E+01	3.577E-01	9.979E+01	6.705E-03
2121	4.118E+02	2.249E+05	1.511E+01	3.403E-01	9.493E+01	6.378E-03
2122	3.917E+02	2.140E+05	1.438E+01	3.237E-01	9.030E+01	6.067E-03
2123	3.726E+02	2.035E+05	1.368E+01	3.079E-01	8.589E+01	5.771E-03
2124	3.544E+02	1.936E+05	1.301E+01	2.929E-01	8.170E+01	5.490E-03
2125	3.371E+02	1.842E+05	1.237E+01	2.786E-01	7.772E+01	5.222E-03
2126	3.207E+02	1.752E+05	1.177E+01	2.650E-01	7.393E+01	4.967E-03
2127	3.050E+02	1.666E+05	1.120E+01	2.521E-01	7.032E+01	4.725E-03
2128	2.902E+02	1.585E+05	1.065E+01	2.398E-01	6.689E+01	4.495E-03
2129	2.760E+02	1.508E+05	1.013E+01	2.281E-01	6.363E+01	4.275E-03
2130	2.626E+02	1.434E+05	9.637E+00	2.170E-01	6.053E+01	4.067E-03
2131	2.497E+02	1.364E+05	9.167E+00	2.064E-01	5.758E+01	3.869E-03
2132	2.376E+02	1.298E+05	8.720E+00	1.963E-01	5.477E+01	3.680E-03
133	2.260E+02	1.235E+05	8.295E+00	1.867E-01	5.210E+01	3.500E-03
134	2.150E+02	1.174E+05	7.890E+00	1.776E-01	4.956E+01	3.330E-03
2135	2.045E+02	1.117E+05	7.505E+00	1.690E-01	4.714E+01	3.167E-03
2136	1.945E+02	1.063E+05	7.139E+00	1.607E-01	4.484E+01	3.013E-03
137	1.850E+02	1.011E+05	6.791E+00	1.529E-01	4.265E+01	2.866E-03
2138	1.760E+02	9.615E+04	6.460E+00	1.454E-01	4.057E+01	2.726E-03

APPENDIX C Air Emissions Estimates And Example Calculations

Table 1 Hyland Facility Associates Landfill Design Capacity

Hyland Landfill Design Capacity

Sanborn Head LandGEM Run Tonnage

Design capacity of the Hyland Landfill:

14,169,300 yd³

Hyland Average AUF w/o BUD

Survey Date	Average AUF w/o BUD - tons/yd ³	
4/26/2001	0.55	
4/24/2002	0.59	
4/27/2003	0.59	
4/14/2004	0.6	
11/19/2005	0.61	
11/22/2006	0.62	
11/11/2007	0.61	
12/31/2008	0.62	
10/26/2009	0.64	
6/18/2010	0.65	drill cuttings started in 2010
11/2/2010	0.67	

Use SHA 0.675 tons/yd³ as AUF for all MSW

Mutliply AUF by design capacity of landfill:

9,567,778 tons

Year	Waste in place (Mg)		1 ton =
1998	49,814		1Mg =
1999	157,453		5
2000	196,395		Mg =
2001	233,119		
2002	245,011		
2003	252,952		
2004	252,998		
2005	339,581		
2006	339,581		
2007	339,581		
2007	339,581		
2009	339,581		
2010	339,581		
2011	339,581		
2012	339,581		
2013	339,581		
2014	339,581		
2015	339,581		
2016	339,581		
2017	339,581		
2018	339,581		
2019	339,581		
2020	339,581		
2021	339,581		
2022	339,581		
2023	339,581		
2024	339,581		
2025	339,581		
2026	163,251		
	ļ		
Total	8,682,194	Mg	
-			
Total tons	9,567,778	tons	
- () 3	44400.000	13	
Total yd ³	14,169,300	yaĭ	
	0.075	+/d ³	
AUF	0.675	vya	

2000 lbs

2204 lbs

1.102 ton

Table 2 Waste Accepted Input Into LandGEM

	Waste Accepted		
Year	(Mg/year) ¹	(short tons/year) ²	
1998	112,387	123,626	
1999	112,387	123,626	
2000	112,387	123,626	
2001	208,895	229,784	
2002	204,673	225,140	
2003	217,893	239,682	
2004	209,612	230,573	
2005	214,460	235,906	
2006	224,391	246,830	
2007	310,784	341,862	
2008	277,865	305,652	
2009	194,805	214,285	
2010	143,926	158,319	
2011	422,727	465,000	
2012	422,727	465,000	
2013	422,727	465,000	
2014	422,727	465,000	
2015	422,727	465,000	
2016	422,727	465,000	
2017	422,727	465,000	
2018	422,727	465,000	
2019	422,727	465,000	
2020	422,727	465,000	
2021	422,727	465,000	
2022	422,727	465,000	
2023	422,727	465,000	
2024	422,727	465,000	
2025	235,334	258,868	
r	8,697,980	9,567,778	
1. Coloulated by LandOEM			

1. Calculated by LandGEM

2. Input into LandGEM from Table 3

TABLE 3

Hyland Facility Associates Landfill Waste Totals 1998-2010¹

_						Α				В	С	D	E		
Year	MSW (tons)	Asbestos Waste (tons)	Ash (tons)	C&D Debris (tons)	Industrial Waste w/Drill Cuttings (tons)	Industrial Waste Drill Cuttings (tons)	Petroleum Contaminated Soil (tons)	Sewage Treatment Plant Sludge (tons)	MSW/C&D Mixed (Tons)	Year(s) Total (tons)	Total BUD Materials		Years Totals w/ C&D Type BUD Minus Drill Cuttings (B+D)-A	Total Waste in Landfill (B+C)	Identify Landfill Section(s) Used
1998	50,403	2,424	655	17,171	9,290	0	372	236	43,076	123,626	0	0	123,626	123,626	Cell 1
1999	50,403	2,424	655	17,171	9,290	0	372	236	43,076	123,626	0	0	123,626		
2000	50,403	2,424	655	17,171	9,290	0	372	236	43,076	123,626	32,046	0	123,626	,	
2001	18,805	655	0	6,422	1,956	0	242	1,781	199,923	229,784	7,478		229,784	,	
2002	18,437	0	0	6,004	7,560	0	89	2,037	190,833	224,960	45,908		225,140	,	
2003	4,951	0	0	2,316	,	0	0	1,741	197,010	232,317	73,191	7,365	,	,	Cell 1 & 2
2004*	170,313	0	0	17,178	16,402	0	0	21,939	0	225,832	21,777	4,741	230,573	,	Cell 1 & 2
2005	201,150	0	0	9,218		0	0	7,421	0	230,858	32,903	,	,	,	Cell 1 & 2
2006	212,848	0	0	942	4,603	0	0	12,680	0	231,073	27,428	,	246,830		Cell 1 & 2
2007	230,729	0	0	23,240	,	0	0	32,216	0	290,634	59,881	51,228	,	,	Cell 1 & 2
2008	198,674	0	0	43,308	,	0	0	23,937	0	281,195	42,969	24,457	305,652	324,164	Cell 1, 2 & 3
2009	145,897	0	297	27,178	7,396	0	0	31,427	0	212,195	37,941	2,090	,	,	
2010	101,706	0	0	18,536	163,673	158,686	0	19,239	7,859	311,013	70,568	5,992	158,319	381,581	
WIP Cumulative Total	1,454,718	7,926	2,263	205,854	288,552	158,686	1,446	155,125	724,854	2,840,738	452,090	116,858	2,798,910	3,292,828	

Notes:

1. Waste totals and waste types provided by Hyland Facility Associates.

2. Years Total = MSW+Asbestos Waste+Ash+C&D Debris+Indusrial Waste+Petro. Cont. Soil+Sewage Sludge+MSW/C&D Mixed

TABLE 4 LFGTE PLANT AND FLARE PTE EMISSION ESTIMATES

General Information

LFG Generation From LandGEN Landfill gas collected @ 75% eff Landfill gas Input for 3 engines LFG to flare Maximum power output per engi	iciency	3511 ft ³ /min 2633 ft ³ /min 1594 ft ³ /min 1040 ft ³ /min 2233 bhp	Maximum Landfill Gas Input to CAT G3520 Engines	
Maximum operating hours LFG low heating value from John Other LFG Data: NMOC	211 ppmv as hexane (site specifi	,	Single engine power @ 100% load* Nominal fuel consumption* Calculated Nominal Heat Rate Calculated Maximum LFG Input per Engine Maximum LFG Input for 3 Engines *From CAT G3520 engines specs	2233 bhp 6509 BTU/bhp-hr 14,534,597 BTU/hr 531 ft ³ /min 1,594 ft ³ /min
Total H ₂ S Total reduced sulfur NMOC CH ₄ One pound One pound	 280 ppmv (site specific test data) 285 ppmv (site specific test data) 98.00% (Destruction efficiency, per the 50% of landfill gas per AP-42 453.5 grams 453,500 milligrams)	or an enclosed combuster)	

LFGTE Plant Emissions

Engine Emission Factors:

NOx	0.60 g/bhp-hour	Title V permitted emission rate
CO	3.00 g/bhp-hour	Title V permitted emission rate

Air Pollutant	Emission Factor (g/bhp-hour)	LFGTE Power (bhp)	Hours per Year Conversion (q/lbs)		Conversion (lbs/t)	LFGTE Emission Estimate (t/vr)	
NOx	(g, c p c) 0.6	6699	8760	453.5	2000	(-))	
CO	3.0	6699	8760	453.5	2000	194.1	

	Gas Flow											
Air Pollutant	ft ³ /year	m ³ /year	Molecular Weight	Conversion factor ² ppmv to mg/m ³	Concentration in LFG (ppmv)	Concentration in LFG (mg/m ³)	Emission Rate (mg/yr)	Emission Rate (gm/yr)	Emission Rate (lbs/yr)	Destruction Efficiency % ⁴	LFGTE Emission Estimate (lbs/yr)	LFGTE Emission Estimate (t/yr)
SO ₂ ⁵	837,651,774	23,729,512	64	2.62	285	746	17,702,507,130	17,702,507	39,035	0.0	39,035	19.52
NMOC as Hexane ³	837,651,774	23,729,512	86	3.52	211	744	17,648,137,917	17,648,138	38,915	98.0	778	0.39
H_2S^6	837,651,774	23,729,512	34	1.39	280	389	9,239,466,441	9,239,466	20,374	98.0	407	0.20

Air Pollutant	Emission Rate	LFG Flow Rate	CH₄ Flow Rate @ 50% of LFG	LFGTE Emission Estimate	LFGTE Emission Estimate
	$(lbs/10^6 ft^3 of CH_{4)}$	(10 ⁶ ft ³ /year)	(10 ⁶ ft ³ /year)	(lbs/yr)	(t/yr)
PM [′]	48	838	419	20,104	10.1

TABLE 4 LFGTE PLANT AND FLARE PTE EMISSION ESTIMATES

3000 CFM Open Flare Emissions

John Zink Flare Emission Factors

NOx	0.068 lbs/MMBTU
СО	0.37 lbs/MMBTU

Air Pollutant	Emission Factor	LFG Used	Hours per Year Conversion		LFG Usage	LFG Heat Value	Annual Heat Value	Flare Emission Estimate
	(lbs/MMBTU)	(ft ³ /min)		(min/hr)	MMft3/yr	BTU/ft ³	MMBTU/yr	t/yr
NOx	0.068	1040	8760	60.0	546.4	456	249,151	8.5
CO	0.37	1040	8760	60.0	546.4	456	249,151	46.1

	Gas Flow ¹											
Air Pollutant	ft ³ /year	m ³ /year	Molecular Weight	Conversion factor ²	ppmv ³	Concentration in LFG (mg/m ³)	mg/year	gm/year	lbs/year	Destruction Efficiency %	Flare Emission Estimate (lbs/yr)	Flare Emission Estimate (t/yr)
SO ₂ ⁵	546,384,426	15,478,312	64	2.62	285	746	11,547,010,922	11,547,011	25,462	0.0	25,462	12.73
NMOC as Hexane	546,384,426	15,478,312	86	3.52	211	744	11,511,546,911	11,511,547	25,384	98.0	508	0.25
H_2S^6	546,384,426	15,478,312	34	1.39	280	389	6,026,729,385	6,026,729	13,289	98.0	266	0.13

Air Pollutant	Emission Rate (lbs/ 10^6 ft ³ of CH ₄₎	LFG Flow Rate (10° ft³/year)	CH ₄ Flow Rate @ 50% of LFG (10° ft³/year)	LFGTE Emission Estimate (lbs/yr)	LFGTE Emission Estimate (t/yr)
PM ⁸	17	546	273	4,644	2.3

1. Gas flow from LandGem results @ 75% collection efficiency minus LFG to LFGTE plant.

2. AP-42 converts ppmv to mg/m3 by multiplying ppmv by M/24.45 where M = molecular weight eg. CO = 12+16 = 28, 24.45 is derived from the molar gas constant R times T (25^oC) in Kelvin or .08205x298.

3. NMOC concentration of 211 ppmv is obtained from 2010 Hyland Tier 2 report.

4. From AP-42 engine and flare destructive efficiency Table 2.4-3 assumed to be at least 98%.

5. SO2 is based on total reduced sulfur (including H_2S) of 285 ppmv in the landfill gas per the 2010 Hyland Tier 2 report.

6. H_2S is based on concentration of 280 ppmv in the landfill gas per the 2010 Hyland Tier 2 report.

7. From AP-42 Table 2.4-5 engine PM emission factor 48 lbs/10⁶ dscf CH_{4.}

8. From AP-42 Table 2.4-5 flare PM emission factor of 17 lbs/10⁶ dscf CH_{4.}

Page 2

te	

Sample Estimated LFGTE and Open Flare Emissions Calculations Hyland Facility Associates Landfill

Landfill Gas Generation and Collection Rate

LandGEM v3.02 was used to estimate the the amount of LFG generated in the peak year 2025, when the Hyland Landfill is projected to be at capacity. LFG production in 2025 is projected to be 3,511 cubic feet per minute (ft³/min). Assuming a 75% collection efficiency, approximately 2,633 ft3/min of LFG will be available for combustion in the LFGTE plant and the open flare.

Maximum LFG to the LFGTE Plant

Maximum LFG input to each of the CAT 3520 engines is based on engine power at 100% load (2233 bhp) and nominal fuel consumption (6509 BTU/bhp-hr) as provided on the Caterpillar G3520 specification sheet attached to these sample calculations. Using these two values the nominal heat rate for each engine can be calculated:

2233 bhp x 6509 BTU/bhp-hr = 14,534,597 BTU/hr

Maximum LFG to each engine is calculated as follows using the LFG low heating value of 456 BTU/ft³ provided on the Caterpillar specification as follows:

14,534,597 BTU/hr x 1 ft³ of LFG/456 BTU x 1 hr/60 min = 531 ft³/min

For three engines:

3 x 531 ft³/min = 1,594 ft³/min or 1,594 ft3/min x 60min/hrs x 8760 hrs/yr = 837,651,744 ft3/yr

LFG to the Open Flare

Assuming 2,633 ft3/min of LFG is collected and the LFGTE plant can combust a maximum of 1,594 ft^3 /min then the remaining amount needs to be controlled by the flare:

2,633 ft³/min - 1,594 ft³/min = 1,040 ft³/min to the open flare

LFGTE Plant Estimated Emissions

The LFGTE engine emission factors for NOx and CO are based on the Title V emission rates of 0.6 g/bhp-hr (NOx) and 3.0 g/bhp-hr (CO). As an example, the annual emission rate for NOx is estimated as follows:

3.0 g/bhp-hr x 6699 bhp x 8760 hr/yr x 1 lbs/453 g x 1 t/2000 lbs = 38.8 t/yr NOx

The estimate annual CO emission rate is calculated in the same manner.

The estimated annual emission rate for SO₂, NMOC and H₂S is based on converting the concentration of the pollutants in parts per million by volume (ppmv) to milligrams per cubic meter (mg/m³) by multiplying the conentration in ppmv by M/24.45 where M is the molecular. weight of the pollutant in g-mole. The concentration of the pollutant in mg/m³ is multiplied by the maximum annual volume of combusted landfill gas in m³/yr. This results in an annual emission rate in units of mg/yr which is converted to t/yr.

Sample Estimated LFGTE and Open Flare Emissions Calculations Hyland Facility Associates Landfill

Example calculations for annual SO_2 emissions, assuming 285 ppmv total reduced sulfur in the landfill gas, are as follows:

285 ppmv x 64 g-mole/24.45 = 746 mg/m³

837,651,744 ft³/yr x m³/35.3 ft³ = 23,729,512 m³/yr

23,729,512 m3/yr x 746 mg/m3 = 17,702,507,130 mg/yr

Convert mg/yr to lbs/yr:

17,702,507,130 mg/yr x lbs/453,500 mg = 39,035 lbs/yr

Convert lbs/yr to t/yr:

39,035 lbs/yr x t/2000lbs = 19.52 t/yr

NMOC and H_2S are estimated the same way except there is a reduction factor of 98 percent due to the fact that NMOCs and SO_2 are destroyed by 98 percent during combustion per AP-42 Table 2.4-3.

The estimated PM emissions are based on AP-42 Table 2.4-5 engine PM emission factor of 48 lbs/ 10^6 dry standard cubic foot (dscf) of CH₄. An example calculation for annual PM emissions assuming 50% methane in the LFG is as follows:

 $838 \times 10^6 \text{ ft}^3 \text{ LFG/yr} \times .50 = 419 \times 10^6 \text{ ft}^3 \text{ CH4/yr}$

48 lbs/10⁶ ft³ CH4 x 419 x 10⁶ ft³ CH4/yr x t/2000 lbs = 10.1 t/yr

Open Flare Estimated Emissions

The open flare emissions are estimated in the same manner as the LFGTE emissions.

G3520C

ENGINE SPEED: COMPRESSION RATIO:	1200 11.3:1		FUEL: FUEL SYSTEM:	CA	.43 CH4:CO2 RATIO) T LOW PRESSURE
AFTERCOOLER - STAGE 1 MAX. INLET (°F):	218				IEL RATIO CONTROL
AFTERCOOLER - STAGE 2 MAX. INLET (°F): JACKET WATER - MAX. OUTLET (°F):	130 230		FUEL PRESS. F MIN. METHANE	. ,	1.5 - 5.0 135
	V+1AC, OC+2AC		RATED ALTITU		1378
IGNITION SYSTEM:	ADEM3			BO. TEMP. (°F):	77
SPARK PLUG TYPE:	J-GAP		NO _x EMISSION	()	0.5 g/bhp-hr
EXHAUST MANIFOLD:	DRY		FUEL LHV (BTL		456
COMBUSTION:	LOW EMISSION		APPLICATION:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GENSET
					0,2,1,0,2,1
RATING AND EFFICIENCY	NOTES	LOAD	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(1)	BHP	2233	1675	1116
GENERATOR POWER (WITHOUT FAN)	(2)	EKW	1600	1200	800
ENGINE EFFICIENCY (ISO 3046/1)	(3)	%	40.1	38.6	36.1
ENGINE EFFICIENCY (NOMINAL)	(3)	%	39.1	37.7	35.2
THERMAL EFFICIENCY (NOMINAL)	(4)	%	40.1	39.3	40.8
TOTAL EFFICIENCY (NOMINAL)	(5)	%	79.2	77.0	76.0
ENGINE DATA	1				
FUEL CONSUMPTION (ISO 3046/1)	(6)	BTU/bhp-hr	6354	6592	7047
FUEL CONSUMPTION (NOMINAL)	(6)	BTU/bhp-hr	6509	6753	7219
AIR FLOW (77 °F, 14.7 psi)	(7)	SCFM	4512	3415	2286
AIR FLOW	(7)	lb/hr	20006	15141	10136
COMPRESSOR OUT PRESSURE	(-)	in. HG (abs)	105.8	80.8	55.5
COMPRESSOR OUT TEMPERATURE		°F	375	306	220
AFTERCOOLER AIR OUT TEMPERATURE		°F	142	138	135
INLET MAN. PRESSURE	(8)	in. HG (abs)	94.4	71.5	48.9
INLET MAN. TEMPERATURE (MEASURED IN PLENUM)	(9)	۴Ú	142	138	135
TIMING	(10)	⁰BTDC	27	27	27
EXHAUST STACK TEMPERATURE	(11)	°F	898	943	984
EXHAUST GAS FLOW (@ stack temp.)	(12)	CFM	12476	9780	6770
EXHAUST MASS FLOW	(12)	lb/hr	22318	16940	11418
	1				
EMISSIONS DATA	(13)	a/bbp.br	0.5	0.5	0.5
NOx (as NO2) NTE CO	(13)	g/bhp-hr g/bhp-hr	4.13	0.5 4.25	0.5 4.4
NOMINAL CO	(14)	g/bhp-hr	2.5	4.25	2.5
THC (molecular weight of 15.84)	(13)	g/bhp-hr	5.84	6.49	7.51
NMHC (molecular weight of 15.84)	(14)	g/bhp-hr	0.88	0.98	1.13
EXHAUST O2	(16)	% DRY	9.0	8.8	8.6
LAMBDA	(16)	<i>70</i> Bitti	1.71	1.67	1.57
	X -7		1	-	
HEAT BALANCE DATA					
LHV INPUT	(17)	BTU/min	242216	188451	134313
HEAT REJECTION TO JACKET	(18)	BTU/min	28738	23806	21929
HEAT REJECTION TO ATMOSPHERE	(19)	BTU/min	7210	6034	4857
	(20)	BTU/min	10108	9524	8917
HEAT REJECTION TO EXHAUST (LHV to 77°F)	(21)	BTU/min	76779	65253	45101
HEAT REJECTION TO EXHAUST (LHV to 350 °F)	(21)	BTU/min	54657	45140	32710
HEAT REJECTION TO A/C - STAGE 1	(22)	BTU/min	13823	5157	102
HEAT REJECTION TO A/C - STAGE 2	(23)	BTU/min	8895	5684	4086

CONDITIONS AND DEFINITIONS

ENGINE RATING OBTAINED AND PRESENTED IN ACCORDANCE WITH ISO 3046/1. DATA REPRESENTS CONDITIONS OF 77 °F, 29.6 IN HG BAROMETRIC PRESSURE, 30% RELATIVE HUMIDITY, 10 IN H2O AIR FILTER RESTRICTION, AND 20 IN H2O EXHAUST STACK PRESSURE. ENGINE EFFICIENCY AND FUEL CONSUMPTION SPECIFICALLY NOTED AS ISO 3046/1 ARE REPRESENTED WITH 5 IN H2O AIR FILTER RESTRICTION AND 0 IN H2O EXHAUST STACK PRESSURE. CONSULT ALTITUDE CURVES FOR APPLICATIONS ABOVE MAXIMUM RATED ALTITUDE AND/OR TEMPERATURE. NO OVERLOAD PERMITTED AT RATING SHOWN.

EMISSION LEVELS ARE BASED ON THE ENGINE OPERATING AT STEADY STATE CONDITIONS AND ADJUSTED TO THE SPECIFIED NOX LEVEL AT 100% LOAD. EMISSION TOLERANCES SPECIFIED ARE DEPENDENT UPON FUEL QUALITY. METHANE NUMBER CANNOT VARY MORE THAN ± 3. PUBLISHED PART LOAD DATA IS WITH AIR FUEL RATIO CONTROL.

ENGINE RATING IS WITH 2 ENGINE DRIVEN WATER PUMPS. PUMP POWER IS NOT INCLUDED IN HEAT BALANCE DATA.

FOR NOTES INFORMATION CONSULT PAGE THREE.

G3520C

GAS ENGINE TECHNICAL DATA

CATERPILLAR®

FUE			ה									
FUE												
CAT METHANE NUMBER	40	50	60	70	80	90	100	110	120	130	140	150
IGNITION TIMING	-	-	-	-	-	-	-	-	24	26	28	30
DERATION FACTOR	0	0	0	0	0	0	0	0	1.00	1.00	1.00	1.00

ALTITUDE DERATION FACTORS

	130	0.96	0.93	0.89	0.86	0.83	0.79	0.76	0.74	0.71	0.68	0.65	0.63	0.60
	120	0.98	0.94	0.91	0.87	0.84	0.81	0.78	0.75	0.72	0.69	0.66	0.64	0.61
AIR	110	0.99	0.96	0.92	0.89	0.86	0.82	0.79	0.76	0.73	0.70	0.68	0.65	0.62
то	100	1.00	0.97	0.94	0.90	0.87	0.84	0.81	0.77	0.74	0.72	0.69	0.66	0.63
TURBO	90	1.00	0.99	0.96	0.92	0.89	0.85	0.82	0.79	0.76	0.73	0.70	0.67	0.65
	80	1.00	1.00	0.97	0.94	0.90	0.87	0.84	0.80	0.77	0.74	0.71	0.68	0.66
(°F)	70	1.00	1.00	0.99	0.96	0.92	0.89	0.85	0.82	0.79	0.76	0.73	0.70	0.67
	60	1.00	1.00	1.00	0.97	0.94	0.90	0.87	0.83	0.80	0.77	0.74	0.71	0.68
	50	1.00	1.00	1.00	0.99	0.96	0.92	0.88	0.85	0.82	0.79	0.76	0.73	0.70
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
		ALTITUDE (FEET ABOVE SEA LEVEL)												

ALTITUDE (FEET ABOVE SEA LEVE

A	AFTERC	OOLER	HEAT F	REJECTI	ON FAC	TORS								
		-	1	1	I	1					1	1		
	130	1.33	1.37	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
	120	1.26	1.31	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33
AIR	110	1.19	1.24	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26	1.26
то	100	1.13	1.17	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
TURBO	90	1.06	1.11	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13
	80	1.00	1.04	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
(°F)	70	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	60	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
	ALTITUDE (FEET ABOVE SEA LEVEL)													

FUEL USAGE GUIDE:

This table shows the derate factor required for a given fuel. Note that deration occurs as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar Methane Number Calculation program.

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for your site.

INLET AND EXHAUST RESTRICTION CORRECTIONS FOR ALTITUDE CAPABILITY:

To determine the appropriate altitude derate factor to be applied to this engine for inlet or exhaust restrictions differening from the standard conditions listed on page 1, a correction to the site altitude can be made to adjust for this difference. Add 141 feet to the site altitude for each additional inch of H2O of exhaust stack pressure greater than spec sheet conditions. Add 282 feet to the site altitude for each additional inch of H2O of inlet restriction greater than spec sheet conditions. If site inlet restriction or exhaust stack pressure are less than spec sheet conditions, the same trends apply to lower the site altitude.

ACTUAL ENGINE RATING:

It is important to note that the Altitude/Temperature deration and the Fuel Usage Guide deration are not cumulative. They are not to be added together. The same is true for the Low Energy Fuel deration (reference the Caterpillar Methane Number Program) and the Fuel Usage Guide deration. However, the Altitude/Temperature deration and Low Energy Fuel deration are cumulative; and they must be added together in the method shown below. To determine the actual power available, take the lowest rating between 1) and 2).

- 1) (Altitude/Temperature Deration) + (Low Energy Fuel Deration)
- 2) Fuel Usage Guide Deration

Note: For NA's always add the Low Energy Fuel deration to the Altitude/Temperature deration. For TA engines only add the Low Energy Fuel deration to the Altitude/Temperature deration is less than 1.0 (100%). This will give the actual rating for the engine at the conditions specified.

AFTERCOOLER HEAT REJECTION FACTORS:

Aftercooler heat rejection is given for standard conditions of 77 °F and 500 ft altitude. To maintain a constant air inlet manifold temperature, as the air to turbo temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor to adjust for ambient and altitude conditions. Multiply this factor by the standard aftercooler heat rejection. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail. For 2 Stage Aftercoolers with separate circuits, the 1st stage will collect 90% of the additional heat.

GAS ENGINE TECHNICAL DATA

NOTES

- 1 ENGINE RATING IS WITH 2 ENGINE DRIVEN WATER PUMPS. TOLERANCE IS \pm 3% OF FULL LOAD.
- 2 GENERATOR POWER DETERMINED WITH AN ASSUMED GENERATOR EFFICIENCY OF 96.1% AND POWER FACTOR OF 0.8 [GENERATOR POWER = ENGINE POWER × GENERATOR EFFICIENCY].
- **3** ISO 3046/1 ENGINE EFFICIENCY TOLERANCE IS (+)0, (-)5% OF FULL LOAD % EFFICIENCY VALUE. NOMINAL ENGINE EFFICIENCY TOLERANCE IS ± 2.5% OF FULL LOAD % EFFICIENCY VALUE.
- 4 THERMAL EFFICIENCY: JACKET HEAT + STAGE 1 A/C HEAT + EXH. HEAT TO 350 °F.
- 5 TOTAL EFFICIENCY = ENGINE EFF. + THERMAL EFF. TOLERANCE IS ± 10% OF FULL LOAD DATA.
- **6** ISO 3046/1 FUEL CONSUMPTION TOLERANCE IS (+)5, (-)0% OF FULL LOAD DATA. NOMINAL FUEL CONSUMPTION TOLERANCE IS ± 2.5 % OF FULL LOAD DATA.
- 7 UNDRIED AIR. FLOW TOLERANCE IS ± 5 %
- 8 INLET MANIFOLD PRESSURE TOLERANCE IS ± 5 %
- 9 INLET MANIFOLD TEMPERATURE TOLERANCE IS ± 9°F.
- **10** TIMING INDICATED IS FOR USE WITH THE MINIMUM FUEL METHANE NUMBER SPECIFIED. CONSULT THE APPROPRIATE FUEL USAGE GUIDE FOR TIMING AT OTHER METHANE NUMBERS.
- 11 EXHAUST STACK TEMPERATURE TOLERANCE IS (+)63 °F, (-)54 °F.
- 12 WET EXHAUST. FLOW TOLERANCE IS $\pm 6 \%$
- 13 NOX TOLERANCES ARE ± 18 % OF SPECIFIED VALUE.
- 14 NTE CO, CO2, THC, and NMHC VALUES ARE "NOT TO EXCEED".
- **15** NOMINAL CO IS A NOMINAL VALUE AND IS REPRESENTATIVE OF A NEW ENGINE DURING THE FIRST 100 HOURS OF ENGINE OPERATION.
- 16 O2% TOLERANCE IS \pm 0.5; LAMBDA TOLERANCE IS \pm 0.05. LAMBDA AND O2 LEVEL ARE THE RESULT OF ADJUSTING THE ENGINE TO OPERATE AT THE SPECIFIED NOX LEVEL.
- 17 LHV RATE TOLERANCE IS ± 2.5%.
- 18 TOTAL JW HEAT (based on treated water) = JACKET HEAT + STAGE 1 A/C HEAT + 0.90 x (STAGE 1 + STAGE 2) x (ACHRF-1). TOLERANCE IS ± 10 % OF FULL LOAD DATA.
- **19** RADIATION HEAT RATE BASED ON TREATED WATER. TOLERANCE IS ± 50% OF FULL LOAD DATA.
- **20** LUBE OIL HEAT RATE BASED ON TREATED WATER. TOLERANCE IS \pm 20% OF FULL LOAD DATA.
- 21 EXHAUST HEAT RATE BASED ON TREATED WATER. TOLERANCE IS ± 10% OF FULL LOAD DATA.
- 22 STAGE 1 A/C HEAT (based on treated water) = STAGE 1 A/C HEAT + 0.90 x (STAGE 1 + STAGE 2) x (ACHRF-1). TOLERANCE IS ± 5 % OF FULL LOAD DATA.
- 23 STAGE 2 A/C HEAT (based on treated water) = (STAGE 2 A/C HEAT + (STAGE 1 + STAGE 2) x 0.10 x (ACHRF 1)) + LUBE OIL HEAT. TOLERANCE IS ± 5 % OF FULL LOAD DATA.

DM5740-04

PAGE 3 OF 3

HAPS Emissions From LandGEM Run

	Emission	
HAPs	(short tor	ns/year)
1,1,1-Trichloroethane (methyl chloroform) - HAP	0.14	
1,1,2,2-Tetrachloroethane - HAP/VOC	0.40	
1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	0.52	
1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	0.04	
1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	0.09	
1,2-Dichloropropane (propylene dichloride) - HAP/VOC	0.04	
Acrylonitrile - HAP/VOC	0.73	
Benzene - No or Unknown Co-disposal - HAP/VOC	0.32	
Benzene - Co-disposal - HAP/VOC	1.88	
Carbon disulfide - HAP/VOC	0.10	
Carbon tetrachloride - HAP/VOC	0.00	
Carbonyl sulfide - HAP/VOC	0.06	
Chlorobenzene - HAP/VOC	0.06	
Chloroethane (ethyl chloride) - HAP/VOC	0.18	
Chloroform - HAP/VOC	0.01	
Dichlorobenzene - (HAP for para isomer/VOC)	0.07	
Dichloromethane (methylene chloride) - HAP	2.60	
Ethylbenzene - HAP/VOC	1.07	
Ethylene dibromide - HAP/VOC	0.00	
Hexane - HAP/VOC	1.24	
Mercury (total) - HAP	0.00	
Methyl ethyl ketone - HAP/VOC	1.12	
Methyl isobutyl ketone - HAP/VOC	0.42	
Perchloroethylene (tetrachloroethylene) - HAP	1.34	
Toluene - No or Unknown Co-disposal - HAP/VOC	7.85	
Trichloroethylene (trichloroethene) - HAP/VOC	0.80	
Vinyl chloride - HAP/VOC	1.00	
Xylenes - HAP/VOC	2.78	
Total HAPs	24.88	tons/yr
HAPS to control devices @ 75% collection efficiency	18.66	tons/yr
Assume 98.0% destruction efficiency from controls	0.37	tons/yr
Fugitive HAPs from landfill	6.22	tons/yr
	•	

TABLE 6

VOC Emissions From LandGEM Run

VOC Emissions From LandGEM Run		
	Emission	
VOCs	<u>(short tor</u>	ns/year)
1,1,2,2-Tetrachloroethane - HAP/VOC	0.40	
1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	0.52	
1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	0.04	
1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	0.09	
1,2-Dichloropropane (propylene dichloride) - HAP/VOC	0.04	
2-Propanol (isopropyl alcohol) - VOC	6.57	
Acrylonitrile - HAP/VOC	0.73	
Benzene - No or Unknown Co-disposal - HAP/VOC	0.32	
Benzene - Co-disposal - HAP/VOC	1.88	
Bromodichloromethane - VOC	1.11	
Butane - VOC	0.64	
Carbon disulfide - HAP/VOC	0.10	
Carbon tetrachloride - HAP/VOC	0.00	
Carbonyl sulfide - HAP/VOC	0.06	
Chlorobenzene - HAP/VOC	0.06	
Chloroethane (ethyl chloride) - HAP/VOC	0.18	
Chloroform - HAP/VOC	0.01	
Chloromethane - VOC	0.13	
Dichlorobenzene - (HAP for para isomer/VOC)	0.07	
Dichlorofluoromethane - VOC	0.58	
Dimethyl sulfide (methyl sulfide) - VOC	1.06	
Ethanol - VOC	2.72	
Ethyl mercaptan (ethanethiol) - VOC	0.31	
Ethylbenzene - HAP/VOC	1.07	
Ethylene dibromide - HAP/VOC	0.00	
Fluorotrichloromethane - VOC	0.23	
Hexane - HAP/VOC	1.24	
Methyl ethyl ketone - HAP/VOC	1.12	
Methyl isobutyl ketone - HAP/VOC	0.42	
Methyl mercaptan - VOC	0.26	
Pentane - VOC	0.52	
Propane - VOC	1.06	
t-1,2-Dichloroethene - VOC	0.59	
Toluene - No or Unknown Co-disposal - HAP/VOC	7.85	
Trichloroethylene (trichloroethene) - HAP/VOC	0.80	
Vinyl chloride - HAP/VOC	1.00	
Xylenes - HAP/VOC	2.78	
Total VOCs	36.59	tons/yr
VOCs to control devices @ 75% collection efficiency	27.44	tons/yr
Assume 98.0% destruction efficiency from controls	0.55	tons/yr
Fugitive VOCs from landfill	9.15	tons/yr

TABLE 7

Estimated Fugitive H₂S and NMOC Emissions from the Hyland Facility Associates Landfill

LFG Generation From LandGEM35Landfill gas collected @ 75% efficiency26Estimated Fugitive LFG8

3511 ft³/min 2633 ft³/min 878 ft³/min

									Landfill	Landfill
					Concentration	Concentration in		Emission	Emission	Emission
Landfill Fugitive Air Pollutant	LFG Flow	LFG Flow	Molecular	Conversion Factor ²	in LFG	LFG	Emission Rate	Rate	Estimate	Estimate
	ft3/year	m3/year	Weight	ppmv to mg/m3	(ppmv)	(mg/m3)	(mg/yr)	(gm/yr)	(lbs/yr)	(t/yr)
NMOC as Hexane ¹	461,345,400	13,069,275	86	3.52	211	742	9,699,593,468	9,699,593	21,388	10.69
H_2S^3	461,345,400	13,069,275	34	1.39	280	389	5,088,731,942	5,088,732	11,221	5.61

1. NMOC concentration of 211 ppmv is obtained from 2010 Hyland Tier 2 report.

2. AP-42 converts ppmv to mg/m3 by multiplying ppmv by M/24.45 where M = molecular weight eg. CO = 12+16 = 28, 24.45 is derived from molar gas constant R times T (25^oC) in Kelvin or .08205x298.

3. H₂S concentration of 280 ppmv is obtained from 2010 Hyland Tier 2 report.

Table 8Vehicle PM Emissions EstimateHyland Facility Associates Landfill

AP-42 Paved Roads

 $E = k(sL)^{0.91} x (W)^{1.02} + C$

E = particle size specific emission factor (lbs/VMT)

PM10 k =	0.0022 lb/VMT (vehicle miles traveled) AP-42, Table 13.2.1-1 particle size multiplier
PM2.5 k =	0.00054 lb/VMT (vehicle miles traveled) AP-42, Table 13.2.1-1 particle size multiplier
sL =	7.4 g/m2 mean value for MSW landfill silt loading AP-42, Table 13.2.1-3
W = average	e weight (tons) of vehicles traveling the road (see Vehicle Data worksheet)
PM10 C =	0.00047 lbs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4
PM2.5 C =	0.00036 lbs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4

AP-42 Unpaved Roads

 $E = k(s/12)^{a} x (W/3)^{b} + C$

- PM2.5 k = 0.15 lb/VMT (vehicle miles traveled) particle size multiplier
- s = 6.4 % surface silt content for MSW landfill AP-42, Table 13.2.2-1
- PM10 a = 0.9 empirical constant
- PM2.5 a = 0.9 empirical constant

W = average weight (tons) of vehicles traveling the road (see Vehicle Data worksheet)

- PM10 b = 0.45 empirical constant
- PM2.5 b = 0.45 empirical constant
- PM10 C = 0.00047 lbs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4
- PM2.5 C = 0.00036 lbs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4

Particulate Matter	Particle Size Multiplier for Paved Road Equation (Ib/VMT)	Particle Size Multiplier for Unpaved Road Equation (lb/VMT)	Brake, Exhaust and Tire Wear Factor (Ibs/VMT)	Surface Silt Loading for Paved Road (g/m ²)	Surface Silt Content for Unpaved Road (%)	Average Vehicle Weight ¹ (tons)	Empirical Constant (a)			Unpaved Road Emission Factor E (Ib/VMT)		Unpaved Road VMT ¹ (miles/year)	Paved Road Emissions (Ibs/year)	Unpaved Road Emissions (Ibs/year)	Total Estimated Road Use PM Emissions ⁵ (Ibs/yr) (tons/yr)	ı
PM10	0.0022	1.50	0.00047	7.40	6.40	19.4	0.90	0.45	0.280	1.97	42,067	71,038	11,779	140,139	151,919	76
PM2.5	0.00054	0.15	0.00036	7.40	6.40	19.4	0.90	0.45	0.069	0.20	42,067	71,038	2,902	14,036	16,938	8

1. See Table 9 for paved and unpaved road vehicle miles traveled and for average vehicle weight computations.

PM Emissions Estimates for Vehicles Traveling on Paved and Unpaved Roads Hyland Facility Associates Landfill

The NYSDEC requires that the fugitive PM10 and PM2.5 emissions caused by vehicles traveling on paved and unpaved roads be estimated. Methods for estimating these emissions can be found in AP-42 Sections 13.2.1 (paved roads) and 13.2.2 (unpaved roads). The latest versions of sections 13.2.1 (2011) and 13.2.2 (2006) contain different equations and empirical factors than the ones used by SHA to estimate fugitve PM road emissions in 2004. The revised equations result in a PM emission that only includes resuspended soil PM emissions and not PM emissions from vehicle exhaust, brake wear and tire wear. PM emission factors from vehicle exhaust, brake wear and tire wear have to be added. In this case, emission factors for 1980's vehicle fleet in Table 13.2.2-4 of AP-42 are used to estimate PM emissions from vehicle exhaust, brake wear and tire wear.

The following equations and input factors were obtained from AP-42, sections 13.2.1 and 13.2.2:

AP-42 Paved Roads

 $E = k(sL)^{0.91} x (W)^{1.02} + C$

E = partic	e size specific emission factor (Ibs/VMT)
PM10 k =	0.0022 lb/VMT (vehicle miles traveled) AP-42, Table 13.2.1-1 particle size multiplier
PM2.5 k =	0.00054 lb/VMT (vehicle miles traveled) AP-42, Table 13.2.1-1 particle size multiplier
sL =	7.4 g/m2 mean value for MSW landfill silt loading AP-42, Table 13.2.1-3
W = avera	ge weight (tons) of vehicles traveling the road (see Vehicle Data worksheet, Table 9)
PM10 C =	0.00047 Ibs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4
PM2.5 C =	0.00036 lbs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4

AP-42 Unpaved Roads

 $E = k(s/12)^{a} x (W/3)^{b} + C$

E	E = particle size specific	emission factor (Ibs/VMT)
PM10 k	k = 1.5	Ib/VMT (vehicle miles traveled) particle size multiplier
PM2.5 k	k = 0.15	Ib/VMT (vehicle miles traveled) particle size multiplier
s	s = 6.4	% surface silt content for MSW landfill AP-42, Table 13.2.2-1
PM10 a	a = 0.9	empirical constant
PM2.5 a	a = 0.9	empirical constant
V	W = average weight (ton	s) of vehicles traveling the road (see Vehicle Data worksheet, Table 9)
PM10 b	b = 0.45	empirical constant
PM2.5 k	b = 0.45	empirical constant
PM10 (C = 0.00047	Ibs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4
PM2.5 C	C = 0.00036	Ibs/VMT exhaust, brake wear and tire wear emission factor AP-42, Table 13.2.2-4

Paved and Unpaved Road Emission Factor Equation

The particle size (i.e, PM10 and PM2.5) specific emission factors for paved and unpaved roads are estimated by entering the various factors (i.e., k, sL, s, a, W, b and C) into the respective equation and completing the operations as indicated by each equation. The average vehicle weight (W) is obtained from the Vehicle Data (Table 9) worksheet.

The PM10 and PM2.5 estimated emission factors (E) for paved and unpaved roads are then multiplied by vehicle miles traveled per year from the Vehicle Data (Table 9) worksheet. This results in PM10 and PM2.5 emissions in lbs/yr, which can be converted to tons/yr by dividing by 2000 lbs/ton.

Table 9 Vehicle Data Hyland Facility Associates Landfill

Section of On- Site Roads Used	Vehicle Type	Approximate Vehicle We (Ibs)		/ehicles per Day a 49% Tonnage Increase	t One-Way Trips for Each Vehicle Per Day			Distance Traveled on Unpaved Roads per Day (ft/day)		Number of Days per Year Used	Fraction of Each Vehicle Type Based on Total Vehicles per Day	Representative Weight Based on Fraction of Total Vehicles (Ibs)	Representative Weight Based on Fraction of Total Vehicles (Tons)
1, 2, 3, 4	Tractor Trailers	50000	48	72	2	453,600	26,804	579,600	34,249	312	0.54	26,866	13.43
1, 2, 3, 4	Local Haul Vehicles	35,000	8	12	2	75,600	4,467	96,600	5,708	312	0.09	3,134	1.57
1, 6	Leachate Trucks	30,000	9	13	2	72,800	4,302	145,600	8,604	312	0.10	2,910	1.46
1	Employees Vehicles	7,500	15	15	2	84,000	4,964			312	0.11	840	0.42
2 ,3 ,4	Pickup Trucks (Operators)	7,500	2	2	4	2,800	165	32,200	1,903	312	0.01	112	0.06
7	Pickup Trucks (Laborers)	7,500	2	2	1			17,780	1,051	312	0.01	112	0.06
1	Pickup Truck (Parts Run)	7,500	1	1	2	5,600	331			312	0.01	56	0.03
1, 2, 4, 5, 7	International 4900 Plow	20,000	1	1	2	6,300	93	25,480	376	78	0.01	149	0.07
1, 2, 4, 5, 7	GMC TopKick (Water Truck)	19,000	1	1	4	12,600	372	50,960	1,506	156	0.01	142	0.07
4, 5	Vovlo A25C Dump	39,000	1	1	8			30,800	1,820	312	0.01	291	0.15
2,3,4,5	Caterpillar 950F Loader	36,000	1	1	8	2,800	165	60,200	3,557	312	0.01	269	0.13
2,4,5,7	John Deere 772BH Grader	35,000	1	1	1	350	3	12,740	125	52	0.01	261	0.13
1, 2, 3, 4	Ford L9000 Fuel Truck	27,000	1	1	2	6,300	372	8,050	476	312	0.01	201	0.10
1	Johnston 4000 Sweeper	25,000	1	1	1	2,800	28			52	0.01	187	0.09
4, 5	John Deere 350D Dump	39,000	1	1	8			30,800	1,820	312	0.01	291	0.15
Non-Hyland Own	ed Heavy Equipment												
4, 5	10-Wheel On-road Dump	35,000	6	6	20			462,000	6,563	75	0.04	1,567	0.78
4, 5	Cat 350DTE Dump	61,000	3	3	20			231,000	3,281	75	0.02	1,366	0.68
Totals			102	134			42,067		71,038				19.4 Te

Road Sections	Description	Distance (ft)
1	Herdman Rd to Scale (paved)	2,800
2	Scale to Tire Wash (paved)	350
3	Tire Wash to Working Face Access Road (unpaved)	3,675
4	Access Road to Working Face (upaved)	350
5	Access Road from Soil Borrow Area to Working Face (unpaved)	3,500
6	Scale to Leachate Holding Ponds (unpaved)	2,800
7	Permimeter Road Around Landfill (unpaved)	8,890

1. Information from SHA 2004 calculations for vehicle road use and Hyland Facility Associates

19.4 Tons - Average Vehicle Weight

Sample Calculations for Vehicle Miles Traveled and Average Vehicle Weight Hyland Facility Associates Landfill

Hyland Facility Associates (Hyland) is requesting a 49 percent increase in the annual tonnage into the Hyland Landfill. The increased tonnage means the number of waste hauling vehicles will increase. The NYSDEC requires that the vehicle emissions be estimated to assess fugitive particulate emissions from the vehicles traveling on paved and unpaved roads. This requires estimating an average weight of all vehicles accessing the Hyland Landfill and the total vehicle miles travelled on paved and unpaved roads. This information is used in equations found in AP-42 sections 13.2.1 and 13.2.2 for estimating emissions from vehicles traveling on paved and unpaved roads. Vehicles that stay at the working face during the operating day are not included in the the list of vehicles.

Hyland Landfill operates a maximum of 312 days per year.

I. Distance Traveled by Vehicles:

The roads traveled at Hyland Landfill are divided into numbered sections with an estimated section length in feet, as follows:

Road Sections	Description	Distance (ft)
1	Herdman Rd to Scale (paved)	2800
2	Scale to Tire Wash (paved)	350
3	Tire Wash to Working Face Access Road (unpaved)	3675
4	Access Road to Working Face (unpaved)	350
5	Access Road from Soil Borrow Area to Working Face (unpaved)	3500
6	Scale to Leachate Holding Ponds (unpaved)	2800
7	Perimeter Road Around Landfill (unpaved)	8890

Each vehicle at the Hyland Landfill travels on certain road sections depending on the vehicle type. For example, a tractor trailer hauling solid waste into the landfill would travel on sections 1, 2, 3 and 4 to get to the working face to tip its load and to exit the landfill.

Vehicle Information

The number of vehicles per day on the site is based in part on information provided in Sanborn Head Associates (SHA) air emission estimates for a 745 ton/day to 1000 ton/day tonnage increase request in 2004 for the Hyland Landfill. The number of waste hauling vehicles (i.e., tractor trailers, local haul vehicles and leachate trucks) in the SHA estimates was multiplied by 1.49 to represent the number of vehicles per day due to the 49 percent tonnage increase.

It is assumed that each waste truck makes two one way trips per day (i.e., one in and one out). The number of vehicles is multiplied by the number of trips per day to estimate the total vehicle type trips per day. For example, using the tractor trailers as an example:

72 tractor trailers x 2 trips/day = 144 tractor trailer trips/day

Road Use Distance Traveled

To estimate the distanced traveled by each vehicle, the vehicle trips per day is multiplied by the trip distance. Using the tractor trailers, the 72 tractor trailers make a total of 144 one way trips per day on road segments 1, 2, 3 and 4. As indicated in the road segment table above, segments 1 and 2 are paved and segments 3 and 4 are unpaved. The distance traveled by the tractor trailers on the paved and unpaved segments is estimated by multiplying the number of trips per day by the distance of the paved or unpaved segments traveled. Using the tractor trailers:

Paved Road:

144 trips/day x (2,800 ft/trip for segment 1 + 350 ft/trip for segment 2) = 453,600 ft/day

Converting the ft/day to miles per year (mi/yr):

(453,600 ft/day x 312 days/yr)/ 5,280 ft/mi = 26,804 mi/yr (on paved road)

Sample Calculations for Vehicle Miles Traveled and Average Vehicle Weight Hyland Facility Associates Landfill

Unpaved Road:

144 trips/day x (3,675 ft/trip for segment 3 + 350 ft/trip for segment 4) = 579,600 ft/day

Converting the ft/day to miles per year (mi/yr):

(579,600 ft/day x 312 days/yr)/ 5,280 ft/mi = 34,249 mi/yr (on unpaved road)

After estimating the vehicle miles traveled (VMT) for each vehicle type, the vehicle miles traveled is summed for the paved and unpaved roads. The VMT for paved and unpaved roads is used for estimating the fugitive PM air emissions from resuspended soil particles as the vehicles travel on paved and unpaved roads.

II. Average Vehicle Weight

Vehicle weights are based on weights provided in the SHA 2004 emissions estimates and vehicle specification sheets obtained on the internet. A representative weight was calculated for each vehicle type based on the total number of vehicles. For example, tractor trailers made up approximately 54 percent of the total number of vehicles (e.g., 72 tractor trailers/134 total vehicles = 0.54) the fraction of tractor trailers is multiplied by the weight of the tractor trailer:

50,000 lbs x 0.54 = 26,866 lbs

The representative weights for each of the vehicles is estimated in the same manner and converted to tons by dividing by 2000 lbs/ton. To obtain the average weight of all vehicles, the individual representative weights are summed to obtain 19.4 tons.